Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Energy dissipation at metal surfaces

Rittmeyer, S. P., Bukas, V. J., & Reuter, K. (2017). Energy dissipation at metal surfaces. Advances in Physics: X, 3(1): 1381574. doi:/10.1080/23746149.2017.1381574.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Energy dissipation at metal surfaces.pdf (Verlagsversion), 4MB
Name:
Energy dissipation at metal surfaces.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rittmeyer, Simon P.1, Autor
Bukas, Vanessa J.1, 2, Autor
Reuter, Karsten1, Autor           
Affiliations:
1Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              
2SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, USA., ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Conversion of energy at the gas–solid interface lies at the heart of many industrial applications such as heterogeneous catalysis. Dissipation of parts of this energy into the substrate bulk drives the thermalization of surface species, but also constitutes a potentially unwanted loss channel. At present, little is known about the underlying microscopic dissipation mechanisms and their (relative) efficiency. At metal surfaces, prominent such mechanisms are the generation of substrate phonons and the electronically non-adiabatic excitation of electron–hole pairs. In recent years, dedicated surface science experiments at defined single-crystal surfaces and predictive-quality first-principles simulations have increasingly been used to analyze these dissipation mechanisms in prototypical surface dynamical processes such as gas-phase scattering and adsorption, diffusion, vibration, and surface reactions. In this topical review we provide an overview of modeling approaches to incorporate dissipation into corresponding dynamical simulations starting from coarse-grained effective theories to increasingly sophisticated methods. We illustrate these at the level of individual elementary processes through applications found in the literature, while specifically highlighting the persisting difficulty of gauging their performance based on experimentally accessible observables.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-07-132017-09-062017-12-21
 Publikationsstatus: Online veröffentlicht
 Seiten: 29
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: /10.1080/23746149.2017.1381574
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Physics: X
  Kurztitel : Adv. Phys. X
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Abingdon, UK : Taylor & Francis
Seiten: 29 Band / Heft: 3 (1) Artikelnummer: 1381574 Start- / Endseite: - Identifikator: ISSN: 2374-6149
CoNE: https://pure.mpg.de/cone/journals/resource/2374-6149