Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Efficient Implicit Solvation Method for Full Potential DFT

Sinstein, M., Scheurer, C., Matera, S., Blum, V., Reuter, K., & Oberhofer, H. (2017). Efficient Implicit Solvation Method for Full Potential DFT. Journal of Chemical Theory and Computation, 13(11), 5582-5603. doi:10.1021/acs.jctc.7b00297.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sinstein, Markus1, Autor
Scheurer, Christoph1, Autor
Matera, Sebastian2, Autor
Blum, Volker3, Autor
Reuter, Karsten1, Autor           
Oberhofer, Harald1, Autor
Affiliations:
1Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              
2Institut für Mathematik, Freie Universität Berlin, Arnimallee 9, D-14195 Berlin, Germany, ou_persistent22              
3Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: With the advent of efficient electronic structure methods, effective continuum solvation methods have emerged as a way to, at least partially, include solvent effects into simulations without the need for expensive sampling over solvent degrees of freedom. The multipole moment expansion (MPE) model, while based on ideas initially put forward almost 100 years ago, has recently been updated for the needs of modern electronic structure calculations. Indeed, for an all-electron code relying on localized basis sets and—more importantly—a multipole moment expansion of the electrostatic potential, the MPE method presents a particularly cheap way of solving the macroscopic Poisson equation to determine the electrostatic response of a medium surrounding a solute. In addition to our implementation of the MPE model in the FHI-aims electronic structure theory code [Blum, V.; Comput. Phys. Commun. 2009, 180, 2175−2196, DOI: 10.1016/j.cpc.2009.06.022], we describe novel algorithms for determining equidistributed points on the solvation cavity—defined as a charge density isosurface—and the determination of cavity surface and volume from just this collection of points and their local density gradients. We demonstrate the efficacy of our model on an analytically solvable test case, against high-accuracy finite-element calculations for a set of ≈140000 2D test cases, and finally against experimental solvation free energies of a number of neutral and singly charged molecular test sets [Andreussi, O.; J. Chem. Phys. 2012, 136, 064102, DOI: 10.1063/1.3676407; Marenich, A. V.; Minnesota Solvation Database, Version 2012; University of Minnesota: Minneapolis, MN, USA, 2012.]. In all test cases we find that our MPE approach compares very well with given references at computational overheads < 20% and sometimes much smaller compared to a plain self-consistency cycle.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-03-202017-10-132017-11-14
 Publikationsstatus: Erschienen
 Seiten: 22
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jctc.7b00297
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Theory and Computation
  Andere : J. Chem. Theory Comput.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: 22 Band / Heft: 13 (11) Artikelnummer: - Start- / Endseite: 5582 - 5603 Identifikator: ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832