Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Oscillatory rheotaxis of artificial swimmers in microchannels

Dey, R., Buness, C. M., Vajdi Hokmabad, B., Jin, C., & Maass, C. C. (2022). Oscillatory rheotaxis of artificial swimmers in microchannels. Nature Communications, 13: 2952. doi:10.1038/s41467-022-30611-1.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Dey, Ranabir1, Autor           
Buness, Carola M.1, Autor           
Vajdi Hokmabad, Babak1, Autor           
Jin, Chenyu1, Autor           
Maass, Corinna C.1, Autor           
Affiliations:
1Group Active soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063307              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Biological and artificial microswimmers often navigate channels under external flow, where in many biomicroswimmers the active upstream motion is oscillatory. Here the authors demonstrate that regular, controllable, and reproducible oscillatory rheotaxis can be observed in artificial microswimmers.

Biological microswimmers navigate upstream of an external flow with trajectories ranging from linear to spiralling and oscillatory. Such a rheotactic response primarily stems from the hydrodynamic interactions triggered by the complex shapes of the microswimmers, such as flagellar chirality. We show here that a self-propelling droplet exhibits oscillatory rheotaxis in a microchannel, despite its simple spherical geometry. Such behaviour has been previously unobserved in artificial swimmers. Comparing our experiments to a purely hydrodynamic theory model, we demonstrate that the oscillatory rheotaxis of the droplet is primarily governed by both the shear flow characteristics and the interaction of the finite-sized microswimmer with all four microchannel walls. The dynamics can be controlled by varying the external flow strength, even leading to the rheotactic trapping of the oscillating droplet. Our results provide a realistic understanding of the behaviour of active particles navigating in confined microflows relevant in many biotechnology applications.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-262022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41467-022-30611-1
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 10 Band / Heft: 13 Artikelnummer: 2952 Start- / Endseite: - Identifikator: ISSN: 2041-1723