Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material

Li, S., Liu, Z., Yang, L., Shen, X., Liu, Q., Hu, Z., et al. (2022). Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material. Nano Energy, 107335, pp. 1-8. doi:10.1016/j.nanoen.2022.107335.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Shuwei1, Autor
Liu, Zepeng1, Autor
Yang, Lu1, Autor
Shen, Xi1, Autor
Liu, Qiuyan1, Autor
Hu, Zhiwei2, Autor           
Kong, Qingyu1, Autor
Ma, Jun1, Autor
Li, Jiedong1, Autor
Lin, Hong-Ji1, Autor
Chen, Chien-Te1, Autor
Wang, Xuefeng1, Autor
Yu, Richeng1, Autor
Wang, Zhaoxiang1, Autor
Chen, Liquan1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Cathode materials, Deep delithiation, Lithium-ion batteries, Ni-rich layered oxides, Oxygen redox, Phase transition, Cathodes, Cobalt compounds, Density functional theory, High resolution transmission electron microscopy, Ions, Lithium compounds, Manganese compounds, Nickel oxide, Oxygen, Redox reactions, Scanning electron microscopy, Transition metals, X ray absorption spectroscopy, Cathodes material, De-lithiation, Deep delithiation, Higher energy density, Layered oxide cathodes, Layered oxides, Ni-rich layered oxide, Oxygen redox, Structural evolution, Structured oxides, Lithium-ion batteries
 Zusammenfassung: The Ni-rich layer-structured oxide is one of the most promising candidate cathode materials for the high energy-density Li-ion batteries. However, the commercial applications of these materials are hindered with drawbacks such as structural instability and poor cycling performance at high potentials. Herein, we comprehensively studied the oxygen redox reaction and the structural reversibility of LiNi0.83Co0.12Mn0.05O2 at deep delithiation using the synchrotron X-ray absorption spectroscopy, scanning transmission electron microscopy and density functional theory calculations. The oxygen redox occurs due to the cation mixing upon delithiation in this material though there are no Li-O-Li configurations in its pristine form. The formation of the I41 structure was attributed to the migration of the transition metals in the deeply delithiated material, extending the route of the phase transformation from the layered to the rock-salt structure. These findings are helpful to enrich the understanding of the origin of the oxygen redox and reveal its impact on the structural transformations in the Ni-rich layered oxides. These will spur new strategies to enhance the performance of the cathode materials for the next-generation Li-ion batteries. © 2022 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-042022-05-04
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.nanoen.2022.107335
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nano Energy
  Andere : Nano Energy
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: - Artikelnummer: 107335 Start- / Endseite: 1 - 8 Identifikator: ISSN: 2211-2855
CoNE: https://pure.mpg.de/cone/journals/resource/2211-2855