日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Spatiotemporal Organization of Electromechanical Phase Singularities during High-Frequency Cardiac Arrhythmias

Molavi Tabrizi, A., Mesgarnejad, A., Bazzi, M., Luther, S., Christoph, J., & Karma, A. (2022). Spatiotemporal Organization of Electromechanical Phase Singularities during High-Frequency Cardiac Arrhythmias. Physical Review X, 12:. doi:10.1103/PhysRevX.12.021052.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000A-95C3-1 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000A-95C4-0
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Molavi Tabrizi, A., 著者
Mesgarnejad, A., 著者
Bazzi, M., 著者
Luther, S.1, 著者           
Christoph, J., 著者
Karma, A., 著者
所属:
1Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063288              

内容説明

表示:
非表示:
キーワード: -
 要旨: Ventricular fibrillation (VF) is a life-threatening electromechanical dysfunction of the heart associated
with complex spatiotemporal dynamics of electrical excitation and mechanical contraction of the heart
muscle. It has been hypothesized that VF is driven by three-dimensional rotating electrical scroll waves,
which can be characterized by filamentlike electrical phase singularities or vortex filaments, but visualizing
their dynamics has been a long-standing challenge. Recently, it was shown that rotating excitation waves
during VF are associated with rotating waves of mechanical deformation. Three-dimensional mechanical
scroll waves and mechanical filaments describing their rotational core regions were observed in the
ventricles by using high-resolution ultrasound. The findings suggest that the spatiotemporal organization
of cardiac fibrillation may be assessed from waves of mechanical deformation. However, the complex
relationship between excitation and mechanical waves during VF is currently not understood. Here, we
study the fundamental nature of mechanical phase singularities, their spatiotemporal organization, and their
relation with electrical phase singularities. We demonstrate the existence of two fundamental types of
mechanical phase singularities: “paired singularities,” which are colocalized with electrical phase
singularities, and “unpaired singularities,” which can form independently. We show that the unpaired
singularities emerge due to the anisotropy of the active force field, generated by fiber anisotropy in cardiac
tissue, and the nonlocality of elastic interactions, which jointly induce strong spatiotemporal inhomogeneities in the strain fields. The inhomogeneities lead to the breakup of deformation waves and create
mechanical phase singularities, even in the absence of electrical singularities, which are typically associated
with excitation wave break. We exploit these insights to develop an approach to discriminate paired and
unpaired mechanical phase singularities, which could potentially be used to locate electrical rotor cores
from a mechanical measurement. Our findings provide a fundamental understanding of the complex
spatiotemporal organization of electromechanical waves in the heart and a theoretical basis for the analysis
of high-resolution ultrasound data for the three-dimensional mapping of heart rhythm disorders.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2022-06-062022
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1103/PhysRevX.12.021052
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physical Review X
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: 23 巻号: 12 通巻号: 021052 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 2160-3308