English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Using Neural Networks to Perform Rapid High-Dimensional Kilonova Parameter Inference

Almualla, M., Ning, Y., Bulla, M., Dietrich, T., Coughlin, M. W., & Guessoum, N. (in preparation). Using Neural Networks to Perform Rapid High-Dimensional Kilonova Parameter Inference.

Item is

Files

show Files
hide Files
:
2112.15470.pdf (Preprint), 3MB
Name:
2112.15470.pdf
Description:
File downloaded from arXiv at 2022-06-14 08:37
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Almualla, Mouza, Author
Ning, Yuhong, Author
Bulla, Mattia, Author
Dietrich, Tim1, 2, Author           
Coughlin, Michael W., Author
Guessoum, Nidhal, Author
Affiliations:
1Multi-messenger Astrophysics of Compact Binaries, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_3329942              
2Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, Golm, DE, ou_1933290              

Content

show
hide
Free keywords: Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE
 Abstract: On the 17th of August, 2017 came the simultaneous detections of GW170817, a
gravitational wave that originated from the coalescence of two neutron stars,
along with the gamma-ray burst GRB170817A, and the kilonova counterpart
AT2017gfo. Since then, there has been much excitement surrounding the study of
neutron star mergers, both observationally, using a variety of tools, and
theoretically, with the development of complex models describing the
gravitational-wave and electromagnetic signals. In this work, we improve upon
our pipeline to infer kilonova properties from observed light-curves by
employing a Neural-Network framework that reduces execution time and handles
much larger simulation sets than previously possible. In particular, we use the
radiative transfer code POSSIS to construct 5-dimensional kilonova grids where
we employ different functional forms for the angular dependence of the
dynamical ejecta component. We find that incorporating an angular dependence
improves the fit to the AT2017gfo light-curves by up to ~50% when quantified in
terms of the weighted Mean Square Error.

Details

show
hide
Language(s):
 Dates: 2021-12-31
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2112.15470
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show