Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Discussion of: Brownian distance covariance

Gretton, A., Fukumizu, K., & Sriperumbudur, B. (2009). Discussion of: Brownian distance covariance. The Annals of Applied Statistics, 3(4), 1285-1294. doi:10.1214/09-AOAS312E.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Gretton, A1, Autor           
Fukumizu, K1, Autor           
Sriperumbudur, BK1, Autor           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: A dependence statistic, the Brownian Distance Covariance,
has been proposed for use in dependence measurement and independence testing:
we refer to this contribution henceforth as SR [we also note the earlier work on
this topic of Székely, Rizzo and Bakirov (2007)]. Some advantages of the authors’
approach are that the random variables X and Y being tested may have arbitrary di-
mension Rp and Rq , respectively; and the test is consistent against all alternatives
subject to the conditions E‖X‖p < ∞ and E‖X‖q < ∞.
In our discussion we review and compare against a number of related depen-
dence measures that have appeared in the statistics and machine learning litera-
ture. We begin with distances of the form of SR, equation (2.2), most notably the
work of Feuerverger (1993); Kankainen (1995); Kankainen and Ushakov (1998);
Ushakov (1999), which we describe in Section 2: these measures have been for-
mulated only for the case p = q = 1, however. In Section 3 we turn to more recent
dependence measures which are computed between mappings of the probability
distributions Px , Py , and Pxy of X, Y , and (X, Y ), respectively, to high dimen-
sional feature spaces: specifically, reproducing kernel Hilbert spaces (RKHSs).
The RKHS dependence statistics may be based on the distance [Smola et al.
(2007), Section 2.3], covariance [Gretton et al. (2005a, 2005b, 2008)], or corre-
lation [Dauxois and Nkiet (1998); Bach and Jordan (2002); Fukumizu, Bach and
Gretton (2007); Fukumizu et al. (2008)] between the feature mappings, and make
smoothness assumptions which can improve the power of the tests over approaches
relying on distances between the unmapped variables. When the RKHSs are char-
acteristic [Fukumizu et al. (2008); Sriperumbudur et al. (2008)], meaning that the
feature mapping from the space of probability measures to the RKHS is injective,
the kernel-based tests are consistent for all probability measures generating (X, Y ). RKHS-based tests apply on spaces Rp × Rq for arbitrary p and q. In fact,
kernel independence tests are applicable on a still broader range of (possibly
non-Euclidean) domains, which can include strings [Leslie et al. (2002)], graphs
[Gärtner, Flach and Wrobel (2003)], and groups [Fukumizu et al. (2009)], making
the kernel approach very general. In Section 4 we provide an empirical comparison
between the approach of SR and the kernel statistic of Gretton et al. (2005b, 2008)
on an independence testing benchmark.

Details

ausblenden:
Sprache(n):
 Datum: 2009-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1214/09-AOAS312E
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: The Annals of Applied Statistics
  Andere : The Annals of Applied Statistics: An official journal of the Institute of Mathematical Statistics
  Kurztitel : Ann Appl Stat
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cleveland, OH, USA : Institute of Mathematical Statistics
Seiten: - Band / Heft: 3 (4) Artikelnummer: - Start- / Endseite: 1285 - 1294 Identifikator: ISSN: 1932-6157
CoNE: https://pure.mpg.de/cone/journals/resource/1932-6157