Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Surface Adsorption Energetics Studied with “Gold Standard” Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110)

Kubas, A., Berger, D., Oberhofer, H., Maganas, D., Reuter, K., & Neese, F. (2016). Surface Adsorption Energetics Studied with “Gold Standard” Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110). The Journal of Physical Chemistry Letters, 7(20), 4207-4212. doi:10.1021/acs.jpclett.6b01845.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kubas, Adam1, 2, Autor
Berger, Daniel2, Autor
Oberhofer, Harald2, Autor
Maganas, Dimitrios1, Autor
Reuter, Karsten2, Autor           
Neese, Frank1, Autor
Affiliations:
1Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany, ou_persistent22              
2Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T)) is widely considered to be the “gold standard” of ab initio quantum chemistry. Using the domain-based pair natural orbital local correlation concept (DLPNO-CCSD(T)), these calculations can be performed on systems with hundreds of atoms at an accuracy of ∼99.9% of the canonical CCSD(T) method. This allows for ab initio calculations providing reference adsorption energetics at solid surfaces with an accuracy approaching 1 kcal/mol. This is an invaluable asset, not least for the assessment of density functional theory (DFT) as the prevalent approach for large-scale production calculations in energy or catalysis applications. Here we use DLPNO-CCSD(T) with embedded cluster models to compute entire adsorbate potential energy surfaces for the binding of a set of prototypical closed-shell molecules (H2O, NH3, CH4, CH3OH, CO2) to the rutile TiO2(110) surface. The DLPNO-CCSD(T) calculations show excellent agreement with available experimental data, even for the “infamous” challenge of correctly predicting the CO2 adsorption geometry. The numerical efficiency of the approach is within 1 order of magnitude of hybrid-level DFT calculations, hence blurring the borders between reference and production technique.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-08-162016-10-032016-10-102016-10-20
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jpclett.6b01845
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Physical Chemistry Letters
  Kurztitel : J. Phys. Chem. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: 6 Band / Heft: 7 (20) Artikelnummer: - Start- / Endseite: 4207 - 4212 Identifikator: ISSN: 1948-7185
CoNE: https://pure.mpg.de/cone/journals/resource/1948-7185