English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
 PreviousNext  
  Function-Space-Based Solution Scheme for the Size-Modified Poisson–Boltzmann Equation in Full-Potential DFT

Ringe, S., Oberhofer, H., Hille, C., Matera, S., & Reuter, K. (2016). Function-Space-Based Solution Scheme for the Size-Modified Poisson–Boltzmann Equation in Full-Potential DFT. Journal of Chemical Theory and Computation, 12(8), 4052-4066. doi:/10.1021/acs.jctc.6b00435.

Item is

Files

show Files
hide Files
:
1606.09021.pdf (Preprint), 4MB
Name:
1606.09021.pdf
Description:
arXiv::1606.09021v1 [cond-mat.mtrl-sci] 29 Jun 2016
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2016
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ringe, Stefan1, Author
Oberhofer, Harald1, Author
Hille, Christoph1, Author
Matera, Sebastian2, Author
Reuter, Karsten1, Author           
Affiliations:
1Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              
2Fachbereich f. Mathematik u. Informatik, Freie Universität Berlin, Otto-von-Simson-Str. 19, D-14195 Berlin, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The size-modified Poisson–Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green’s function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

Details

show
hide
Language(s): eng - English
 Dates: 2016-04-282016-07-082016-08-09
 Publication Status: Issued
 Pages: 15
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: /10.1021/acs.jctc.6b00435
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Chemical Theory and Computation
  Other : J. Chem. Theory Comput.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: 15 Volume / Issue: 12 (8) Sequence Number: - Start / End Page: 4052 - 4066 Identifier: ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832