English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Kernel functions based on triplet comparisons

Kleindessner, M., & von Luxburg, U. (2018). Kernel functions based on triplet comparisons. In I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 6808-6818). Red Hook, NY: Curran Associates, Inc. Retrieved from https://papers.nips.cc/paper/2017/hash/07211688a0869d995947a8fb11b215d6-Abstract.html.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kleindessner, Matthäus1, Author
von Luxburg, Ulrike1, 2, Author           
Affiliations:
1External Organizations, ou_persistent22              
2Max Planck Fellow Group Statistical Learning Theory, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_3031011              

Content

show
hide
Free keywords: Max Planck Fellow von Luxburg
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 20172018-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show
hide
Title: 31st Annual Conference on Neural Information Processing Systems (NIPS 2017)
Place of Event: Long Beach, CA
Start-/End Date: 2017-12-04 - 2017-12-09

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 30
  Subtitle : 31st Annual Conference on Neural Information Processing Systems (NIPS 2017)
Source Genre: Proceedings
 Creator(s):
Guyon, I.1, Editor
von Luxburg, U.2, Author           
Bengio, S.1, Editor
Wallach, H.1, Editor
Fergus, R.1, Editor
Vishwanathan, S.1, Editor
Garnett, R.1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
2 Max Planck Fellow Group Statistical Learning Theory, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_3031011            
Publ. Info: Red Hook, NY : Curran Associates, Inc.
Pages: - Volume / Issue: 10 Sequence Number: - Start / End Page: 6808 - 6818 Identifier: URI: https://papers.nips.cc/paper/2017
ISBN: 978-1-5108-6096-4