English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Tunneling ionization in ultrashort laser pulses: Edge effect and remedy

Klaiber, M., Lv, Q. Z., Hatsagortsyan, K. Z., & Keitel, C. H. (2022). Tunneling ionization in ultrashort laser pulses: Edge effect and remedy. Physical Review A, 105(6): 063109. doi:10.1103/PhysRevA.105.063109.

Item is

Files

show Files
hide Files
:
2201.07589.pdf (Preprint), 6MB
Name:
2201.07589.pdf
Description:
File downloaded from arXiv at 2022-06-22 17:30
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Description:
open access
OA-Status:

Creators

show
hide
 Creators:
Klaiber, Michael1, Author           
Lv, Q. Z.1, Author           
Hatsagortsyan, Karen Zaven1, Author           
Keitel, Christoph H.1, Author           
Affiliations:
1Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society, ou_904546              

Content

show
hide
Free keywords: Physics, Atomic Physics, physics.atom-ph,Quantum Physics, quant-ph
 MPINP: Research group K. Z. Hatsagortsyan – Division C. H. Keitel
 Abstract: Tunneling ionization of an atom in ultrashort laser pulses is considered.
When the driving laser pulse is switched-on and -off with a steep slope, the
photoelectron momentum distribution (PMD) shows an edge-effect because of the
photoelectron diffraction by the time-slit of the pulse. The trivial
diffraction pattern of the edge effect consisting of fast oscillations in the
PMD disguises in the deep nonadiabatic regime the physically more interesting
features in the spectrum which originate from the photoelectron dynamics. We
point out the precise conditions how to avoid this scenario experimentally and
if unavoidable in theory we put forward an efficient method to remove the
edge-effect in the PMD. This allows to highlight the nonadiabatic dynamical
features of the PMD, which is indispensable for their further investigation in
complex computationally demanding scenarios. The method is firstly demonstrated
on a one-dimensional problem, and further applied in three-dimensions for the
attoclock. The method is validated by a comparison of analytical results via
the strong-field approximation with numerical solutions of the time-dependent
Schr\"odinger equation.

Details

show
hide
Language(s):
 Dates: 2022-06-22
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2201.07589
DOI: 10.1103/PhysRevA.105.063109
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review A
  Other : Physical Review A: Atomic, Molecular, and Optical Physics
  Other : Phys. Rev. A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : American Physical Society
Pages: - Volume / Issue: 105 (6) Sequence Number: 063109 Start / End Page: - Identifier: ISSN: 1050-2947
CoNE: https://pure.mpg.de/cone/journals/resource/954925225012_2