hide
Free keywords:
Physics, Atomic Physics, physics.atom-ph,Quantum Physics, quant-ph
MPINP:
Research group K. Z. Hatsagortsyan – Division C. H. Keitel
Abstract:
Tunneling ionization of an atom in ultrashort laser pulses is considered.
When the driving laser pulse is switched-on and -off with a steep slope, the
photoelectron momentum distribution (PMD) shows an edge-effect because of the
photoelectron diffraction by the time-slit of the pulse. The trivial
diffraction pattern of the edge effect consisting of fast oscillations in the
PMD disguises in the deep nonadiabatic regime the physically more interesting
features in the spectrum which originate from the photoelectron dynamics. We
point out the precise conditions how to avoid this scenario experimentally and
if unavoidable in theory we put forward an efficient method to remove the
edge-effect in the PMD. This allows to highlight the nonadiabatic dynamical
features of the PMD, which is indispensable for their further investigation in
complex computationally demanding scenarios. The method is firstly demonstrated
on a one-dimensional problem, and further applied in three-dimensions for the
attoclock. The method is validated by a comparison of analytical results via
the strong-field approximation with numerical solutions of the time-dependent
Schr\"odinger equation.