Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Evaluating different classes of porous materials for carbon capture

Huck, J. M., Lin, L.-C., Berger, A. H., Shahrak, M. N., Martin, R. L., Bhown, A. S., et al. (2014). Evaluating different classes of porous materials for carbon capture. Energy & Environmental Science, 7(12), 4132-4146. doi:10.1039/C4EE02636E.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Huck, Johanna M.1, 2, Autor
Lin, Li-Chiang1, Autor
Berger, Adam H.3, Autor
Shahrak, Mahdi Niknam1, 4, Autor
Martin, Richard L.5, Autor
Bhown, Abhoyjit S.3, Autor
Haranczyk, Maciej5, Autor
Reuter, Karsten2, Autor           
Smit, Berend1, 6, 7, Autor
Affiliations:
1Dept. of Chemical and Biomolecular Engineering, University of California, , Berkeley, CA 94720, ou_persistent22              
2Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              
3Electric Power Research Institute, 3420 Hillview Ave, Palo Alto, CA 94304, USA, ou_persistent22              
4Department of Chemical Engineering, Quchan University of Advanced Technologies, Quchan, Iran, ou_persistent22              
5Computat. Research Div., Lawrence Berkeley Nat. Lab., Berkeley, CA 94720, USA, ou_persistent22              
6Materials Sciences Div., Lawrence Berkeley Nat. Lab., Berkeley, CA 94720, USA, ou_persistent22              
7Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Carbon Capture and Sequestration (CCS) is one of the promising ways to significantly reduce the CO2 emission from power plants. In particular, amongst several separation strategies, adsorption by nano-porous materials is regarded as a potential means to efficiently capture CO2 at the place of its origin in a post-combustion process. The search for promising materials in such a process not only requires the screening of a multitude of materials but also the development of an adequate evaluation metric. Several evaluation criteria have been introduced in the literature concentrating on a single adsorption or material property at a time. Parasitic energy is a new approach for material evaluation to address the energy load imposed on a power plant while applying CCS. In this work, we evaluate over 60 different materials with respect to their parasitic energy, including experimentally realized and hypothetical materials such as metal–organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), porous polymer networks (PPNs), and zeolites. The results are compared to other proposed evaluation criteria and performance differences are studied regarding the regeneration modes, (i.e. Pressure-Swing (PSA) and Temperature-Swing Adsorption (TSA)) as well as the flue gas composition.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-08-202014-10-102014-10-102014-12-01
 Publikationsstatus: Erschienen
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1039/C4EE02636E
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Energy & Environmental Science
  Kurztitel : Energy Environ. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, UK : Royal Society of Chemistry
Seiten: 15 Band / Heft: 7 (12) Artikelnummer: - Start- / Endseite: 4132 - 4146 Identifikator: ISSN: 1754-5692
CoNE: https://pure.mpg.de/cone/journals/resource/1754-5692