Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Predictive-Quality Surface Reaction Chemistry in Real Reactor Models: Integrating First-Principles Kinetic Monte Carlo Simulations into Computational Fluid Dynamics

Matera, S., Maestri, M., Cuoci∥, A., & Reuter, K. (2014). Predictive-Quality Surface Reaction Chemistry in Real Reactor Models: Integrating First-Principles Kinetic Monte Carlo Simulations into Computational Fluid Dynamics. ACS Catalysis, 4(11), 4081-4092. doi:/10.1021/cs501154e.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
cs501154e.pdf (Verlagsversion), 4MB
Name:
cs501154e.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2014
Copyright Info:
ACS

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Matera, Sebastian1, Autor
Maestri, Matteo2, Autor
Cuoci∥, Alberto3, Autor
Reuter, Karsten1, Autor           
Affiliations:
1Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              
2Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, P.zza Leonardo da Vinci 32, I-20133 Milano, Italy, ou_persistent22              
3Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, P.zza Leonardo da Vinci 32, I-20133 Milano, Italy, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present a numerical framework to integrate first-principles kinetic Monte Carlo (1p-kMC) based microkinetic models into the powerful computational fluid dynamics (CFD) package CatalyticFoam. This allows for the simultaneous account of a predictive-quality surface reaction kinetics inside an explicitly described catalytic reactor geometry. Crucial means toward an efficient and stable implementation are the exploitation of the disparate time scales of surface chemistry and gas-phase transport, as well as the reliable interpolation of irregularly gridded 1p-kMC data by means of an error-based modified Shepard approach. We illustrate the capabilities of the framework using the CO oxidation at Pd(100) and RuO2(110) model catalysts in different reactor configurations and fluid dynamic conditions as showcases. These showcases underscore both the necessity and value of having reliable treatments of the surface chemistry and flow inside integrated multiscale catalysis simulations when aiming at an atomic-scale understanding of the catalytic function in near-ambient environments. Our examples highlight how intricately this function is affected by specifics of the reactor geometry and heat dissipation channels on the one end, and on the other end by characteristics of the intrinsic catalytic activity that are only captured by treatments beyond prevalent mean-field rate equations.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-08-082014-102014-11-07
 Publikationsstatus: Online veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: /10.1021/cs501154e
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Catalysis
  Kurztitel : ACS Catal.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : ACS
Seiten: 12 Band / Heft: 4 (11) Artikelnummer: - Start- / Endseite: 4081 - 4092 Identifikator: ISSN: 2155-5435
CoNE: https://pure.mpg.de/cone/journals/resource/2155-5435