English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A new recombineering system for Photorhabdus and Xenorhabdus

Yin, J., Zhu, H., Xia, L., Ding, X., Hoffmann, T., Hoffmann, M., et al. (2015). A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Research (London), 43(6): e36. doi:10.1093/nar/gku1336.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Yin, J, Author
Zhu, H1, Author           
Xia, L, Author
Ding, X, Author
Hoffmann, T, Author
Hoffmann, M, Author
Bian, X, Author
Müller, R, Author
Fu, J, Author
Stewart, AF, Author
Zhang, Y, Author
Affiliations:
1Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375791              

Content

show
hide
Free keywords: -
 Abstract: Precise and fluent genetic manipulation is still limited to only a few prokaryotes. Ideally the highly advanced technologies available in Escherichia coli could be broadly applied. Our efforts to apply lambda Red technology, widely termed 'recombineering', in Photorhabdus and Xenorhabdus yielded only limited success. Consequently we explored the properties of an endogenous Photorhabdus luminescens lambda Red-like operon, Plu2934/Plu2935/Plu2936. Bioinformatic and functional tests indicate that Plu2936 is a 5'-3' exonuclease equivalent to Redα and Plu2935 is a single strand annealing protein equivalent to Redβ. Plu2934 dramatically enhanced recombineering efficiency. Results from bioinformatic analysis and recombineering assays suggest that Plu2934 may be functionally equivalent to Redγ, which inhibits the major endogenous E. coli nuclease, RecBCD. The recombineering utility of Plu2934/Plu2935/Plu2936 was demonstrated by engineering Photorhabdus and Xenorhabdus genomes, including the activation of the 49-kb non-ribosomal peptide synthase (NRPS) gene cluster plu2670 by insertion of a tetracycline inducible promoter. After tetracycline induction, novel secondary metabolites were identified. Our work unlocks the potential for bioprospecting and functional genomics in the Photorhabdus, Xenorhabdus and related genomes.

Details

show
hide
Language(s):
 Dates: 2015-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1093/nar/gku1336
PMID: 25539914
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nucleic Acids Research (London)
  Other : Nucleic Acids Res
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Oxford University Press
Pages: 9 Volume / Issue: 43 (6) Sequence Number: e36 Start / End Page: - Identifier: ISSN: 0305-1048
CoNE: https://pure.mpg.de/cone/journals/resource/110992357379342