English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Challenging the Manifesto Project Data Monopoly: Estimating Parties’ Policy Position Time-Series Using Expert and Mass Survey Data

Bruinsma, B., & Gemenis, K. (2020). Challenging the Manifesto Project Data Monopoly: Estimating Parties’ Policy Position Time-Series Using Expert and Mass Survey Data. Academia.

Item is

Files

hide Files
:
Academia_2020_Gemenis.pdf (Any fulltext), 588KB
Name:
Academia_2020_Gemenis.pdf
Description:
Full text open access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

hide
 Creators:
Bruinsma, Bastiaan1, Author
Gemenis, Kostas2, Author           
Affiliations:
1Goethe University, Frankfurt, Germany, ou_persistent22              
2Politische Ökonomie von Wachstumsmodellen, MPI for the Study of Societies, Max Planck Society, ou_2489691              

Content

hide
Free keywords: -
 Abstract: In this research note we propose a novel approach for generating time-series for
party positions as an alternative to the estimates provided by the Manifesto Project.
Our approach combines multiple expert surveys from different years, filling up the
missing data using a multiple imputation algorithm that uses additional information
from mass surveys. We illustrate this approach by estimating time-series for eight
European countries for periods up to 50 years and show that our estimates are
comparable, if not superior, in richness and face validity to those of the Manifesto
Project. We conclude that our approach can easily generate data that can be used to
explore the robustness of empirical analyses using party position data and serve as
valid benchmarks for computational text scaling and crowd-sourced manual coding
of party manifestos.

Details

hide
Language(s): eng - English
 Dates: 2020-03-02
 Publication Status: Published online
 Pages: 21, 4, 12, 3, 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Academia
Source Genre: Web Page
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -