Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Bayesian weighting of statistical potentials in NMR structure calculation

Mechelke, M., & Habeck, M. (2014). Bayesian weighting of statistical potentials in NMR structure calculation. PLoS One, 9(6): e0100197. doi:10.1371/journal.pone.0100197.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Mechelke, M1, Autor           
Habeck, M, Autor           
Affiliations:
1Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375791              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The use of statistical potentials in NMR structure calculation improves the accuracy of the final structure but also raises issues of double counting and possible bias. Because statistical potentials are averaged over a large set of structures, they may not reflect the preferences of a particular structure or data set. We propose a Bayesian method to incorporate a knowledge-based backbone dihedral angle potential into an NMR structure calculation. To avoid bias exerted through the backbone potential, we adjust its weight by inferring it from the experimental data. We demonstrate that an optimally weighted potential leads to an improvement in the accuracy and quality of the final structure, especially with sparse and noisy data. Our findings suggest that no universally optimal weight exists, and that the weight should be determined based on the experimental data. Other knowledge-based potentials can be incorporated using the same approach.

Details

ausblenden:
Sprache(n):
 Datum: 2014-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pone.0100197
PMID: 24956116
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: PLoS One
  Kurztitel : PLoS One
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: 11 Band / Heft: 9 (6) Artikelnummer: e0100197 Start- / Endseite: - Identifikator: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850