English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Can domain-based local pair natural orbitals approaches accurately predict phosphorescence energies?

Bruno, G., de Souza, B., Neese, F., & Bistoni, G. (2022). Can domain-based local pair natural orbitals approaches accurately predict phosphorescence energies? Physical Chemistry Chemical Physics, 24(23), 14228-14241. doi:10.1039/D2CP01623K.

Item is

Files

show Files
hide Files
:
d2cp01623k1.pdf (Supplementary material), 321KB
Name:
d2cp01623k1.pdf
Description:
Supporting Information
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Bruno, Giovanna1, Author
de Souza, Bernardo2, Author
Neese, Frank3, Author           
Bistoni, Giovanni4, 5, Author           
Affiliations:
1Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy , ou_persistent22              
2FAccTs GmbH, Köln, Germany, ou_persistent22              
3Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              
4Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541703              
5Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Since the discovery of the peculiar conducting and optical properties of aromatics, many efforts have been made to characterize and predict their phosphorescence. This physical process is exploited in modern Organic Emitting Light Diodes (OLEDs), and it is also one of the processes decreasing the efficiency of Dye-sensitized solar cells (DSSCs). Herein, we propose a computational strategy for the accurate calculation of singlet–triplet gaps of aromatic compounds, which provides results that are in excellent agreement with available experimental data. Our approach relies on the domain-based local pair natural orbital (DLPNO) variant of the “gold standard” CCSD(T) method. The convergence of our results with respect to the key technical parameters of the calculation, such as the basis set used, the approximations employed in the perturbative triples correction, and the dimension of the PNOs space, was thoroughly discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2022-04-072022-05-202022-05-232022-06-21
 Publication Status: Published in print
 Pages: 14
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1039/D2CP01623K
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Chemistry Chemical Physics
  Abbreviation : Phys. Chem. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, England : Royal Society of Chemistry
Pages: - Volume / Issue: 24 (23) Sequence Number: - Start / End Page: 14228 - 14241 Identifier: ISSN: 1463-9076
CoNE: https://pure.mpg.de/cone/journals/resource/954925272413_1