English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Horizontal geometry of trade wind cumuli - aircraft observations from a shortwave infrared imager versus a radar profiler

Dorff, H., Konow, H., & Ament, F. (2022). Horizontal geometry of trade wind cumuli - aircraft observations from a shortwave infrared imager versus a radar profiler. Atmospheric Measurement Techniques, 15, 3641-3661. doi:10.5194/amt-15-3641-2022.

Item is

Files

show Files
hide Files
:
amt-15-3641-2022.pdf (Publisher version), 7MB
Name:
amt-15-3641-2022.pdf
Description:
Final Revised Paper
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
© The Authors

Locators

show

Creators

show
hide
 Creators:
Dorff, Henning1, 2, Author
Konow, Heike1, 3, Author
Ament, Felix1, 3, Author
Affiliations:
1external, ou_persistent22              
2IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913547              
3MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913545              

Content

show
hide
Free keywords: -
 Abstract: This study elaborates on how aircraft-based horizontal geometries of trade wind cumulus clouds differ whether a one-dimensional (1D) profiler or a two-dimensional (2D) imager is used. While nadir profiling devices are limited to a 1D realization of the cloud transect size, with limited representativeness of horizontal cloud extension, 2D imagers enhance our perspectives by mapping the horizontal cloud field. Both require high resolutions to detect the lower end of the cloud size spectrum.
In this regard, the payload aboard the HALO (High Altitude and LOng Range Research Aircraft) achieves a comparison and also a synergy of both measurement systems. Using the NARVAL II (Next-Generation Aircraft Remote-Sensing for Validation Studies) campaign, we combine HALO observations from a 35.2 GHz cloud and precipitation radar (1D) and from the hyperspectral 2D imager specMACS (Munich Aerosol Cloud Scanner), with a 30 times higher along-track resolution, and compare their cloud masks. We examine cloud size distributions in terms of sensitivity to sample size, resolution and the considered field of view (2D or 1D). This specifies impacts on horizontal cloud sizes derived from the across-track perspective of the high-resolution imager in comparison to the radar curtain. We assess whether and how the trade wind field amplifies uncertainties in cloud geometry observations along 1D transects through directional cloud elongation.
Our findings reveal that each additional dimension, no matter of the device, causes a significant increase in observed clouds. The across-track field yields the highest increase in the cloud sample. The radar encounters difficulties in characterizing the trade wind cumuli size distribution. More than 60 % of clouds are subgrid scale for the radar. The radar has issues in the representation of clouds shorter than 200 m, as they are either unresolved or are incorrectly displayed as single grid points. Very shallow clouds can also remain unresolved due to too low radar sensitivity. Both facts deteriorate the cloud size distribution significantly at this scale. Double power law characteristics in the imager-based cloud size distribution do not occur in radar observations. Along-track measurements do not necessarily cover the predominant cloud extent and inferred geometries' lack of representativeness. Trade wind cumuli show horizontal patterns similar to ellipses, with a mean aspect ratio of 3 : 2 and having tendencies of stronger elongation with increasing cloud size. Instead of circular cloud shape estimations based on the 1D transect, elliptic fits maintain the cloud area size distribution. Increasing wind speed tends to stretch clouds more and tilts them into the wind field, which makes transect measurements more representative along this axis.

Details

show
hide
Language(s): eng - English
 Dates: 2021-092022-042022-062022-06-16
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/amt-15-3641-2022
BibTex Citekey: DorffKonowEtAl2022
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Measurement Techniques
  Abbreviation : AMT
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Göttingen : European Geosciences Union, Copernicus
Pages: - Volume / Issue: 15 Sequence Number: - Start / End Page: 3641 - 3661 Identifier: ISSN: 1867-1381
CoNE: https://pure.mpg.de/cone/journals/resource/1867-1381