English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Whole-body gene expression pattern registration in Platynereis larvae

Asadulina, A., Panzera, A., Verasztó, C., Liebig, C., & Jékely, G. (2012). Whole-body gene expression pattern registration in Platynereis larvae. EvoDevo, 3: 27. doi:10.1186/2041-9139-3-27.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Asadulina, A1, Author           
Panzera, A1, Author           
Verasztó, C1, Author           
Liebig, C2, Author           
Jékely, G1, Author           
Affiliations:
1Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3379109              
2Light Microscopy, Max Planck Institute for Developmental Biology, Max Planck Society, Max-Planck-Ring 5, 72076 Tübingen, DE, ou_3376130              

Content

show
hide
Free keywords: -
 Abstract: Background: Digital anatomical atlases are increasingly used in order to depict different gene expression patterns and neuronal morphologies within a standardized reference template. In evo-devo, a discipline in which the comparison of gene expression patterns is a widely used approach, such standardized anatomical atlases would allow a more rigorous assessment of the conservation of and changes in gene expression patterns during micro- and macroevolutionary time scales. Due to its small size and invariant early development, the annelid Platynereis dumerilii is particularly well suited for such studies. Recently a reference template with registered gene expression patterns has been generated for the anterior part (episphere) of the Platynereis trochophore larva and used for the detailed study of neuronal development.
Results: Here we introduce and evaluate a method for whole-body gene expression pattern registration for Platynereis trochophore and nectochaete larvae based on whole-mount in situ hybridization, confocal microscopy, and image registration. We achieved high-resolution whole-body scanning using the mounting medium 2,2'-thiodiethanol (TDE), which allows the matching of the refractive index of the sample to that of glass and immersion oil thereby reducing spherical aberration and improving depth penetration. This approach allowed us to scan entire whole-mount larvae stained with nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) in situ hybridization and counterstained fluorescently with an acetylated-tubulin antibody and the nuclear stain 4'6-diamidino-2-phenylindole (DAPI). Due to the submicron isotropic voxel size whole-mount larvae could be scanned in any orientation. Based on the whole-body scans, we generated four different reference templates by the iterative registration and averaging of 40 individual image stacks using either the acetylated-tubulin or the nuclear-stain signal for each developmental stage. We then registered to these templates the expression patterns of cell-type specific genes. In order to evaluate the gene expression pattern registration, we analyzed the absolute deviation of cell-center positions. Both the acetylated-tubulin- and the nuclear-stain-based templates allowed near-cellular-resolution gene expression registration. Nuclear-stain-based templates often performed significantly better than acetylated-tubulin-based templates. We provide detailed guidelines and scripts for the use and further expansion of the Platynereis gene expression atlas.
Conclusions: We established whole-body reference templates for the generation of gene expression atlases for Platynereis trochophore and nectochaete larvae. We anticipate that nuclear-staining-based image registration will be applicable for whole-body alignment of the embryonic and larval stages of other organisms in a similar size range.

Details

show
hide
Language(s):
 Dates: 2012-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1186/2041-9139-3-27
PMID: 23199348
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: EvoDevo
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: https://evodevojournal.biomedcentral.com/ : BMC
Pages: 12 Volume / Issue: 3 Sequence Number: 27 Start / End Page: - Identifier: Other: 2041-9139
CoNE: https://pure.mpg.de/cone/journals/resource/2041-9139