English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein

Fokina, O., Chellamuthu, V.-R., Forchhammer, K., & Zeth, K. (2010). Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 19760-19765. doi:10.1073/pnas.1007653107.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Fokina, O, Author
Chellamuthu, V-R1, Author           
Forchhammer, K, Author
Zeth, K1, Author           
Affiliations:
1Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375791              

Content

show
hide
Free keywords: -
 Abstract: P(II) proteins control key processes of nitrogen metabolism in bacteria, archaea, and plants in response to the central metabolites ATP, ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and carbon and nitrogen abundance. This metabolic information is integrated by P(II) and transmitted to regulatory targets (key enzymes, transporters, and transcription factors), modulating their activity. In oxygenic phototrophs, the controlling enzyme of arginine synthesis, N-acetyl-glutamate kinase (NAGK), is a major P(II) target, whose activity responds to 2-OG via P(II). Here we show structures of the Synechococcus elongatus P(II) protein in complex with ATP, Mg(2+), and 2-OG, which clarify how 2-OG affects P(II)-NAGK interaction. P(II) trimers with all three sites fully occupied were obtained as well as structures with one or two 2-OG molecules per P(II) trimer. These structures identify the site of 2-OG located in the vicinity between the subunit clefts and the base of the T loop. The 2-OG is bound to a Mg(2+) ion, which is coordinated by three phosphates of ATP, and by ionic interactions with the highly conserved residues K58 and Q39 together with B- and T-loop backbone interactions. These interactions impose a unique T-loop conformation that affects the interactions with the P(II) target. Structures of P(II) trimers with one or two bound 2-OG molecules reveal the basis for anticooperative 2-OG binding and shed light on the intersubunit signaling mechanism by which P(II) senses effectors in a wide range of concentrations.

Details

show
hide
Language(s):
 Dates: 2010-11
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.1007653107
PMID: 21041661
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : PNAS
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 107 (46) Sequence Number: - Start / End Page: 19760 - 19765 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230