Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A Computational Model of the Escape Response Latency in the Giant Fiber System of Drosophila melanogaster

Augustin, H., Zylbertal, A., & Partridge, L. (2019). A Computational Model of the Escape Response Latency in the Giant Fiber System of Drosophila melanogaster. eNeuro, 6(2). doi:10.1523/ENEURO.0423-18.2019.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://www.ncbi.nlm.nih.gov/pubmed/31001574 (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Augustin, H.1, Autor           
Zylbertal, A., Autor
Partridge, L.1, Autor           
Affiliations:
1Department Partridge - Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Max Planck Society, ou_1942287              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Aging/*physiology Animals Behavior, Animal/*physiology Brain/*physiology Computer Simulation Drosophila melanogaster/*physiology Electrophysiological Phenomena *Gap Junctions *Interneurons/physiology *Models, Neurological *Motor Neurons/physiology Muscle, Skeletal/*physiology Neural Pathways/physiology Reaction Time/*physiology *Drosophila *aging *computational model *escape response *ion channels
 Zusammenfassung: The giant fiber system (GFS) is a multi-component neuronal pathway mediating rapid escape response in the adult fruit-fly Drosophila melanogaster, usually in the face of a threatening visual stimulus. Two branches of the circuit promote the response by stimulating an escape jump followed by flight initiation. A recent work demonstrated an age-associated decline in the speed of signal propagation through the circuit, measured as the stimulus-to-muscle depolarization response latency. The decline is likely due to the diminishing number of inter-neuronal gap junctions in the GFS of ageing flies. In this work, we presented a realistic conductance-based, computational model of the GFS that recapitulates the experimental results and identifies some of the critical anatomical and physiological components governing the circuit's response latency. According to our model, anatomical properties of the GFS neurons have a stronger impact on the transmission than neuronal membrane conductance densities. The model provides testable predictions for the effect of experimental interventions on the circuit's performance in young and ageing flies.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-04-202019-04-20
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: 31001574
DOI: 10.1523/ENEURO.0423-18.2019
ISSN: 2373-2822 (Electronic)2373-2822 (Linking)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: eNeuro
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 6 (2) Artikelnummer: - Start- / Endseite: - Identifikator: -