Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage

Nava, M. M., Miroshnikova, Y. A., Biggs, L. C., Whitefield, D. B., Metge, F., Boucas, J., et al. (2020). Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell, 181(4), 800-817 e22. doi:10.1016/j.cell.2020.03.052.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://www.ncbi.nlm.nih.gov/pubmed/32302590 (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Nava, M. M., Autor
Miroshnikova, Y. A., Autor
Biggs, L. C., Autor
Whitefield, D. B., Autor
Metge, F.1, Autor           
Boucas, J.1, Autor           
Vihinen, H., Autor
Jokitalo, E., Autor
Li, X.2, Autor           
Garcia Arcos, J. M., Autor
Hoffmann, B., Autor
Merkel, R., Autor
Niessen, C. M., Autor
Dahl, K. N., Autor
Wickström, S. A.3, Autor           
Affiliations:
1Bioinformatics, Core Facilities, Max Planck Institute for Biology of Ageing, Max Planck Society, ou_1942302              
2Proteomics, Core Facilities, Max Planck Institute for Biology of Ageing, Max Planck Society, ou_1942305              
3Wickström – Skin Homeostasis and Ageing, Max Planck Research Groups, Max Planck Institute for Biology of Ageing, Max Planck Society, ou_1942298              

Inhalt

einblenden:
ausblenden:
Schlagwörter: DNA damage chromatin heterochromatin mechanoprotection mechanotransduction nuclear architecture nuclear lamina nuclear mechanics stem cells
 Zusammenfassung: Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-05-142020-04-18
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: 32302590
DOI: 10.1016/j.cell.2020.03.052
ISSN: 1097-4172 (Electronic)0092-8674 (Linking)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cell
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 181 (4) Artikelnummer: - Start- / Endseite: 800 - 817 e22 Identifikator: -