English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The second moment GL(n) × GL(n) Rankin-Selberg L-functions

Jana, S. (2022). The second moment GL(n) × GL(n) Rankin-Selberg L-functions. Forum of Mathematics, Sigma, 10: e47. doi:10.1017/fms.2022.39.

Item is

Basic

show hide
Genre: Journal Article
Latex : The second moment of $\mathrm{GL}(n)\times\mathrm{GL}(n)$ Rankin--Selberg $L$-functions

Files

show Files
hide Files
:
Jana_The second moment GL(n)×GL(n) Rankin-Selberg L-functions_2022.pdf (Publisher version), 555KB
Name:
Jana_The second moment GL(n)×GL(n) Rankin-Selberg L-functions_2022.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
:
2012.07817.pdf (Preprint), 471KB
 
File Permalink:
-
Name:
2012.07817.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1017/fms.2022.39 (Publisher version)
Description:
-
OA-Status:
Gold
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Jana, Subhajit1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory
 Abstract: We prove an asymptotic expansion of the second moment of the central values
of the $\mathrm{GL}(n)\times\mathrm{GL}(n)$ Rankin--Selberg $L$-functions
$L(1/2,\pi\otimes\pi_0)$, for a fixed cuspidal automorphic representation
$\pi_0$, over the family of $\pi$ with analytic conductors bounded by a
quantity which is tending off to infinity. Our proof uses the integral
representations of the $L$-functions, period with regularized Eisenstein
series, and the invariance properties of the analytic newvectors.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Published online
 Pages: 39
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2012.07817
DOI: 10.1017/fms.2022.39
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Forum of Mathematics, Sigma
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge University Press
Pages: - Volume / Issue: 10 Sequence Number: e47 Start / End Page: - Identifier: -