Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Interpreting tree ensemble machine learning models with endoR

Ruaud, A., Pfister, N., Ley, R., & Youngblut, N. (2022). Interpreting tree ensemble machine learning models with endoR. PLoS Computational Biology, 18(12): e1010714. doi:10.1371/journal.pcbi.1010714.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Ruaud, A1, Autor           
Pfister, N, Autor
Ley, RE1, Autor           
Youngblut, ND1, Autor           
Affiliations:
1Department Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375789              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yield limited insights into how microbial taxa may be associated. We developed endoR, a method to interpret tree ensemble models. First, endoR simplifies the fitted model into a decision ensemble. Then, it extracts information on the importance of individual features and their pairwise interactions, displaying them as an interpretable network. Both the endoR network and importance scores provide insights into how features, and interactions between them, contribute to the predictive performance of the fitted model. Adjustable regularization and bootstrapping help reduce the complexity and ensure that only essential parts of the model are retained. We assessed endoR on both simulated and real metagenomic data. We found endoR to have comparable accuracy to other common approaches while easing and enhancing model interpretation. Using endoR, we also confirmed published results on gut microbiome differences between cirrhotic and healthy individuals. Finally, we utilized endoR to explore associations between human gut methanogens and microbiome components. Indeed, these hydrogen consumers are expected to interact with fermenting bacteria in a complex syntrophic network. Specifically, we analyzed a global metagenome dataset of 2203 individuals and confirmed the previously reported association between Methanobacteriaceae and Christensenellales. Additionally, we observed that Methanobacteriaceae are associated with a network of hydrogen-producing bacteria. Our method accurately captures how tree ensembles use features and interactions between them to predict a response. As demonstrated by our applications, the resultant visualizations and summary outputs facilitate model interpretation and enable the generation of novel hypotheses about complex systems.

Details

ausblenden:
Sprache(n):
 Datum: 2022-12
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1010714
PMID: 36516158
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: 39 Band / Heft: 18 (12) Artikelnummer: e1010714 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1