English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2

Pan, Y., He, B., Helm, T., Chen, D., Schnelle, W., & Felser, C. (2022). Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nature Communications, 13: 3909, pp. 1-8. doi:10.1038/s41467-022-31372-7.

Item is

Files

show Files
hide Files
:
Pan_Ultrahigh.pdf (Publisher version), 2MB
Name:
Pan_Ultrahigh.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
CC BY 4.0

Locators

show

Creators

show
hide
 Creators:
Pan, Yu1, Author           
He, Bin1, Author           
Helm, Toni2, Author
Chen, Dong1, Author           
Schnelle, Walter3, Author           
Felser, Claudia4, Author           
Affiliations:
1Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
2External Organizations, ou_persistent22              
3Walter Schnelle, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863441              
4Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Content

show
hide
Free keywords: -
 Abstract: Topological semimetals are well known for their interesting physical properties, while their mechanical properties have rarely received attention. With the increasing demand for flexible electronics, we explore the great potential of the van der Waals bonded Weyl semimetal WTe2 for flexible thermoelectric applications. We find that WTe2 single crystals have an ultrahigh Nernst power factor of ~3 Wm−1K−2, which outperforms the conventional Seebeck power factors of the state-of-the-art thermoelectric semiconductors by 2–3 orders of magnitude. A unique band structure that hosts compensated electrons and holes with extremely high mobilities is the primary mechanism for this huge Nernst power factor. Moreover, a large Ettingshausen signal of ~5 × 10−5 KA−1m is observed at 23.1 K and 9 T. In this work, the combination of the exceptional Nernst–Ettingshausen performance and excellent mechanical transformative ability of WTe2 would be instructive for flexible micro-/nano-thermoelectric devices. © 2022, The Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2022-07-072022-07-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-022-31372-7
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 13 Sequence Number: 3909 Start / End Page: 1 - 8 Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723