English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Optimizing Edge Detection for Image Segmentation with Multicut Penalties

Jung, S., Ziegler, S., Kardoost, A., & Keuper, M. (2022). Optimizing Edge Detection for Image Segmentation with Multicut Penalties. In B. Andres, F. Bernard, D. Cremers, S. Frintrop, B. Goldlücke, & I. Ihrke (Eds.), Pattern Recognition (pp. 182-197). Berlin: Springer. doi:10.1007/978-3-031-16788-1_12.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files
hide Files
:
arXiv:2112.05416.pdf (Preprint), 6MB
Name:
arXiv:2112.05416.pdf
Description:
File downloaded from arXiv at 2022-07-21 09:21
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Jung, Steffen1, Author           
Ziegler, Sebastian2, Author
Kardoost, Amirhossein2, Author
Keuper, Margret1, Author           
Affiliations:
1Computer Vision and Machine Learning, MPI for Informatics, Max Planck Society, ou_1116547              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: Computer Science, Computer Vision and Pattern Recognition, cs.CV
 Abstract: The Minimum Cost Multicut Problem (MP) is a popular way for obtaining a graph
decomposition by optimizing binary edge labels over edge costs. While the
formulation of a MP from independently estimated costs per edge is highly
flexible and intuitive, solving the MP is NP-hard and time-expensive. As a
remedy, recent work proposed to predict edge probabilities with awareness to
potential conflicts by incorporating cycle constraints in the prediction
process. We argue that such formulation, while providing a first step towards
end-to-end learnable edge weights, is suboptimal, since it is built upon a
loose relaxation of the MP. We therefore propose an adaptive CRF that allows to
progressively consider more violated constraints and, in consequence, to issue
solutions with higher validity. Experiments on the BSDS500 benchmark for
natural image segmentation as well as on electron microscopic recordings show
that our approach yields more precise edge detection and image segmentation.

Details

show
hide
Language(s): eng - English
 Dates: 2021-12-10202220222022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Jung_GCPR2022
DOI: 10.1007/978-3-031-16788-1_12
 Degree: -

Event

show
hide
Title: 44th German Conference on Pattern Recognition
Place of Event: Konstanz, Germany
Start-/End Date: 2022-09-27 - 2022-09-30

Legal Case

show

Project information

show

Source 1

show
hide
Title: Pattern Recognition
  Abbreviation : DAGM GCPR 2022
  Subtitle : 44th DAGM German Conference, DAGM GCPR 2022 ; Konstanz, Germany, September 27-30, 2022 ; Proceedings
Source Genre: Proceedings
 Creator(s):
Andres, Björn1, Editor
Bernard, Florian1, Editor           
Cremers, Daniel1, Editor
Frintrop, Simone1, Editor
Goldlücke, Bastian1, Editor           
Ihrke, Ivo1, Editor           
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: Berlin : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 182 - 197 Identifier: ISBN: 978-3-031-16787-4

Source 2

show
hide
Title: Lecture Notes in Computer Science
  Abbreviation : LNCS
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 13485 Sequence Number: - Start / End Page: - Identifier: -