Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Small ionic radii limit time step in Martini 3 molecular dynamics simulations

Fábián, B., Thallmair, S., & Hummer, G. (2022). Small ionic radii limit time step in Martini 3 molecular dynamics simulations. The Journal of Chemical Physics, 157(3): 034101. doi:10.1063/5.0095523.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
034101_1_online.pdf (beliebiger Volltext), 6MB
Name:
034101_1_online.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Link (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Fábián, Balázs1, Autor                 
Thallmair, Sebastian2, Autor
Hummer, Gerhard1, 3, Autor                 
Affiliations:
1Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              
2Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany, ou_persistent22              
3Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Coarse-grained force fields; Molecular dynamics; Lipid bilayer
 Zusammenfassung: Among other improvements, the Martini 3 coarse-grained force field provides a more accurate description of the solvation of protein pockets and channels through the consistent use of various bead types and sizes. Here, we show that the representation of Na+ and Cl ions as “tiny” (TQ5) beads limits the accessible time step to 25 fs. By contrast, with Martini 2, time steps of 30–40 fs were possible for lipid bilayer systems without proteins. This limitation is relevant for systems that require long equilibration times. We derive a quantitative kinetic model of time-integration instabilities in molecular dynamics (MD) as a function of the time step, ion concentration and mass, system size, and simulation time. We demonstrate that ion–water interactions are the main source of instability at physiological conditions, followed closely by ion–ion interactions. We show that increasing the ionic masses makes it possible to use time steps up to 40 fs with minimal impact on static equilibrium properties and dynamical quantities, such as lipid and solvent diffusion coefficients. Increasing the size of the bead representing the ions (and thus changing their hydration) also permits longer time steps. For a soluble protein, we find that increasing the mass of tiny beads also on the protein permits simulations with 30-fs time steps. The use of larger time steps in Martini 3 results in a more efficient exploration of configuration space. The kinetic model of MD simulation crashes can be used to determine the maximum allowed time step upfront for an efficient use of resources and whenever sampling efficiency is critical.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-04-112022-06-232022-07-152022-07-21
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0095523
BibTex Citekey: fabian_small_2022
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 157 (3) Artikelnummer: 034101 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226