English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Gas-Phase Mechanism of O.-/Ni2+-Mediated Methane Conversion to Formaldehyde

Li, Y., Müller, F., Schöllkopf, W., Asmis, K., & Sauer, J. (2022). Gas-Phase Mechanism of O.-/Ni2+-Mediated Methane Conversion to Formaldehyde. Angewandte Chemie, 134(29): e202202297. doi:10.1002/ange.202202297.

Item is

Files

show Files
hide Files
:
Angewandte Chemie - 2022 - Li - Gas%u2010Phase Mechanism of O Ni2 %u2010Mediated Methane Conversion to Formaldehyde.pdf (Publisher version), 3MB
Name:
Angewandte Chemie - 2022 - Li - Gas%u2010Phase Mechanism of O Ni2 %u2010Mediated Methane Conversion to Formaldehyde.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Li, Yake1, 2, 3, Author           
Müller, Fabian1, 2, 4, Author           
Schöllkopf, Wieland2, Author           
Asmis, Knut1, Author
Sauer, Joachim4, Author
Affiliations:
1Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, ou_persistent22              
2Molecular Physics, Fritz Haber Institute, Max Planck Society, ou_634545              
3Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China, ou_persistent22              
4Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany, ou_persistent22              

Content

show
hide
Free keywords: Heteronuclear Oxide Cluster; Infrared Photodissociation Spectroscopy; Ion Trap Mass Spectrometry; Methane Activation; Nickel-Containing Catalyst
 Abstract: The gas-phase reaction of NiAl2O4+ with CH4 is studied by mass spectrometry in combination with vibrational action spectroscopy and density functional theory (DFT). Two product ions, NiAl2O4H+ and NiAl2O3H2+, are identified in the mass spectra. The DFT calculations predict that the global minimum-energy isomer of NiAl2O4+ contains Ni in the +II oxidation state and features a terminal Al−O.- oxygen radical site. They show that methane can react along two competing pathways leading to formation of either a methyl radical (CH3⋅) or formaldehyde (CH2O). Both reactions are initiated by hydrogen atom transfer from methane to the terminal O.- site, followed by either CH3⋅ loss or CH3⋅ migration to an O2- site next to the Ni2+ center. The CH3⋅ attaches as CH3+ to O2- and its unpaired electron is transferred to the Ni-center reducing it to Ni+. The proposed mechanism is experimentally confirmed by vibrational spectroscopy of the reactant and two different product ions.

Details

show
hide
Language(s): eng - English
 Dates: 2022-02-142022-04-232022-04-232022-07-18
 Publication Status: Published in print
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/ange.202202297
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Angewandte Chemie
  Abbreviation : Angew. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: 6 Volume / Issue: 134 (29) Sequence Number: e202202297 Start / End Page: - Identifier: ISSN: 0044-8249
CoNE: https://pure.mpg.de/cone/journals/resource/954926979058_1