English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Operationalizing Fairness for Responsible Machine Learning

Lahoti, P. (2022). Operationalizing Fairness for Responsible Machine Learning. PhD Thesis, Universität des Saarlandes, Saarbrücken. doi:10.22028/D291-36586.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Lahoti, Preethi1, 2, Author           
Weikum, Gerhard1, Advisor           
Gummadi, Krishna3, Referee           
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              
3Group K. Gummadi, Max Planck Institute for Software Systems, Max Planck Society, ou_2105291              

Content

show
hide
Free keywords: -
 Abstract: As machine learning (ML) is increasingly used for decision making in scenarios that impact humans, there is a growing awareness of its potential for unfairness. A large body of recent work has focused on proposing formal notions of fairness in ML, as well as approaches to mitigate unfairness. However, there is a growing disconnect between the ML fairness literature and the needs to operationalize fairness in practice. This thesis addresses the need for responsible ML by developing new models and methods to address challenges in operationalizing fairness in practice. Specifically, it makes the following contributions. First, we tackle a key assumption in the group fairness literature that sensitive demographic attributes such as race and gender are known upfront, and can be readily used in model training to mitigate unfairness. In practice, factors like privacy and regulation often prohibit ML models from collecting or using protected attributes in decision making. To address this challenge we introduce the novel notion of computationally-identifiable errors and propose Adversarially Reweighted Learning (ARL), an optimization method that seeks to improve the worst-case performance over unobserved groups, without requiring access to the protected attributes in the dataset. Second, we argue that while group fairness notions are a desirable fairness criterion, they are fundamentally limited as they reduce fairness to an average statistic over pre-identified protected groups. In practice, automated decisions are made at an individual level, and can adversely impact individual people irrespective of the group statistic. We advance the paradigm of individual fairness by proposing iFair (individually fair representations), an optimization approach for learning a low dimensional latent representation of the data with two goals: to encode the data as well as possible, while removing any information about protected attributes in the transformed representation. Third, we advance the individual fairness paradigm, which requires that similar individuals receive similar outcomes. However, similarity metrics computed over observed feature space can be brittle, and inherently limited in their ability to accurately capture similarity between individuals. To address this, we introduce a novel notion of fairness graphs, wherein pairs of individuals can be identified as deemed similar with respect to the ML objective. We cast the problem of individual fairness into graph embedding, and propose PFR (pairwise fair representations), a method to learn a unified pairwise fair representation of the data. Fourth, we tackle the challenge that production data after model deployment is constantly evolving. As a consequence, in spite of the best efforts in training a fair model, ML systems can be prone to failure risks due to a variety of unforeseen reasons. To ensure responsible model deployment, potential failure risks need to be predicted, and mitigation actions need to be devised, for example, deferring to a human expert when uncertain or collecting additional data to address model’s blind-spots. We propose Risk Advisor, a model-agnostic meta-learner to predict potential failure risks and to give guidance on the sources of uncertainty inducing the risks, by leveraging information theoretic notions of aleatoric and epistemic uncertainty. This dissertation brings ML fairness closer to real-world applications by developing methods that address key practical challenges. Extensive experiments on a variety of real-world and synthetic datasets show that our proposed methods are viable in practice.

Details

show
hide
Language(s): eng - English
 Dates: 2022-05-2020222022
 Publication Status: Issued
 Pages: 129 p.
 Publishing info: Saarbrücken : Universität des Saarlandes
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Lahotophd2022
DOI: 10.22028/D291-36586
URN: nbn:de:bsz:291--ds-365860
Other: hdl:20.500.11880/33465
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show