English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Rank jumps on elliptic surfaces and the Hilbert property

Loughran, D., & Salgado, C. (2022). Rank jumps on elliptic surfaces and the Hilbert property. Annales de l'Institut Fourier, 72(2), 617-638. doi:10.5802/aif.3457.

Item is

Files

show Files
hide Files
:
Loughran-Salgado_Rank jumps on elliptic surfaces and the Hilbert property_2022.pdf (Publisher version), 2MB
Name:
Loughran-Salgado_Rank jumps on elliptic surfaces and the Hilbert property_2022.pdf
Description:
-
OA-Status:
Miscellaneous
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
Article mis à disposition par ses auteurs selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France http://creativecommons.org/licenses/by-nd/3.0/fr/

Locators

show
hide
Locator:
https://doi.org/10.5802/aif.3457 (Publisher version)
Description:
-
OA-Status:
Miscellaneous
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Loughran, Daniel, Author
Salgado, Cecília1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory, Algebraic Geometry
 Abstract: Given an elliptic surface over a number field, we study the collection of
fibres whose Mordell-Weil rank is greater than the generic rank. Under suitable
assumptions, we show that this collection is not thin. Our results apply to
quadratic twist families and del Pezzo surfaces of degree 1.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Issued
 Pages: 22
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1907.01987
DOI: 10.5802/aif.3457
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Annales de l'Institut Fourier
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Institut Fourier
Pages: - Volume / Issue: 72 (2) Sequence Number: - Start / End Page: 617 - 638 Identifier: -