English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Weak approximation for del Pezzo surfaces of low degree

Demeio, J., & Streeter, S. (2023). Weak approximation for del Pezzo surfaces of low degree. International Mathematics Research Notices, 2023(13), 11549-11576. doi:10.1093/imrn/rnac167.

Item is

Files

show Files
hide Files
:
2111.11409.pdf (Preprint), 304KB
Name:
2111.11409.pdf
Description:
File downloaded from arXiv at 2022-08-08 13:16
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Demeio-Streeter_Weak approximation for del Pezzo surfaces of low degree_2023.pdf (Publisher version), 598KB
 
File Permalink:
-
Name:
Demeio-Streeter_Weak approximation for del Pezzo surfaces of low degree_2023.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1093/imrn/rnac167 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Demeio, Julian1, Author           
Streeter, Sam, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry, Number Theory
 Abstract: We prove, via an “arithmetic surjectivity” approach inspired by work of Denef, that weak weak approximation holds for surfaces with two conic fibrations satisfying a general assumption. In particular, weak weak approximation holds for general del Pezzo surfaces of degrees 1 or 2 with a conic fibration.

Details

show
hide
Language(s): eng - English
 Dates: 2023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2111.11409
DOI: 10.1093/imrn/rnac167
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Mathematics Research Notices
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford University Press
Pages: - Volume / Issue: 2023 (13) Sequence Number: - Start / End Page: 11549 - 11576 Identifier: -