Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Robust phylodynamic analysis of genetic sequencing data from structured populations

Scire, J., Barido-Sottani, J., Kühnert, D., Vaughan, T. G., & Stadler, T. (2022). Robust phylodynamic analysis of genetic sequencing data from structured populations. Viruses, 14(8): 1648. doi:10.3390/v14081648.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Andere : Improved multi-type birth-death phylodynamic inference in BEAST 2 [title of preprint]

Dateien

einblenden: Dateien
ausblenden: Dateien
:
shh3277.pdf (Verlagsversion), 2MB
Name:
shh3277.pdf
Beschreibung:
OA
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
shh3277pre.pdf (Preprint), 475KB
Name:
shh3277pre.pdf
Beschreibung:
OA
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
Analysis / datasets, Supplementary files (Ergänzendes Material)
Beschreibung:
zip. - (last seen: August 2022)
OA-Status:
Sonstiges
externe Referenz:
XML files for the replication of the BEAST2 analyses (Ergänzendes Material)
Beschreibung:
(last seen: August 2022)
OA-Status:
Sonstiges

Urheber

einblenden:
ausblenden:
 Urheber:
Scire, Jérémie, Autor
Barido-Sottani, Joëlle, Autor
Kühnert, Denise1, Autor           
Vaughan, Timothy G., Autor
Stadler, Tanja, Autor
Affiliations:
1tide, Max Planck Institute for the Science of Human History, Max Planck Society, ou_2591691              

Inhalt

einblenden:
ausblenden:
Schlagwörter: phylogenetics; Bayesian inference; phylodynamics; population structure
 Zusammenfassung: The multi-type birth–death model with sampling is a phylodynamic model which enables the quantification of past population dynamics in structured populations based on phylogenetic trees. The BEAST 2 package bdmm implements an algorithm for numerically computing the probability density of a phylogenetic tree given the population dynamic parameters under this model. In the initial release of bdmm, analyses were computationally limited to trees consisting of up to approximately 250 genetic samples. We implemented important algorithmic changes to bdmm which dramatically increased the number of genetic samples that could be analyzed and which improved the numerical robustness and efficiency of the calculations. Including more samples led to the improved precision of parameter estimates, particularly for structured models with a high number of inferred parameters. Furthermore, we report on several model extensions to bdmm, inspired by properties common to empirical datasets. We applied this improved algorithm to two partly overlapping datasets of the Influenza A virus HA sequences sampled around the world—one with 500 samples and the other with only 175—for comparison. We report and compare the global migration patterns and seasonal dynamics inferred from each dataset. In this way, we show the information that is gained by analyzing the bigger dataset, which became possible with the presented algorithmic changes to bdmm. In summary, bdmm allows for the robust, faster, and more general phylodynamic inference of larger datasets.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-07-27
 Publikationsstatus: Online veröffentlicht
 Seiten: 19
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: 1. Introduction
2. Methods
2.1. Description of the Extended Multi-Type Birth–Death Model
2.2. Implementation Improvements
3. Results
3.1. Evaluation of Numerical Improvements
3.2. Validation Against Original Implementation
3.3. Influenza A virus (H3N2) Analysis
3.4. Properties of bdmm
3.4.1. Identifiability of Parameters
3.4.2. Computational Costs
4. Discussion
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3390/v14081648
bioRxiv: 10.1101/2020.01.06.895532
Anderer: shh3277
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Viruses
  Andere : Computational Biology of Viruses: From Molecules to Epidemics (Special Issue)
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Basel : MDPI
Seiten: - Band / Heft: 14 (8) Artikelnummer: 1648 Start- / Endseite: - Identifikator: ISSN: 1999-4915
CoNE: https://pure.mpg.de/cone/journals/resource/1999-4915

Quelle 2

einblenden:
ausblenden:
Titel: bioRxiv
Genre der Quelle: Webseite
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cold Spring : Cold Spring harbor Laboratory
Seiten: - Band / Heft: - Artikelnummer: 895532 Start- / Endseite: - Identifikator: URI: https://www.biorxiv.org/