Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction

Haase, F., Bergmann, A., Jones, T., Timoshenko, J., Herzog, A., Jeon, H., et al. (2022). Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nature Energy, 7(8), 765-773. doi:10.1038/s41560-022-01083-w.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s41560-022-01083-w.pdf (Verlagsversion), 2MB
Name:
s41560-022-01083-w.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Haase, Felix1, Autor           
Bergmann, Arno1, Autor           
Jones, Travis2, Autor           
Timoshenko, Janis1, Autor           
Herzog, Antonia1, Autor           
Jeon, Hyosang1, Autor           
Rettenmaier, Clara1, Autor           
Roldan Cuenya, Beatriz1, Autor           
Affiliations:
1Interface Science, Fritz Haber Institute, Max Planck Society, ou_2461712              
2Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Water electrolysis is a key technology to establish CO2-neutral hydrogen production. Nonetheless, the near-surface structure of electrocatalysts during the anodic oxygen evolution reaction (OER) is still largely unknown, which hampers knowledge-driven optimization. Here using operando X-ray absorption spectroscopy and density functional theory calculations, we provide quantitative near-surface structural insights into oxygen-evolving CoOx(OH)y nanoparticles by tracking their size-dependent catalytic activity down to 1 nm and their structural adaptation to OER conditions. We uncover a superior intrinsic OER activity of sub-5 nm nanoparticles and a size-dependent oxidation leading to a near-surface Co–O bond contraction during OER. We find that accumulation of oxidative charge within the surface Co3+O6 units triggers an electron redistribution and an oxyl radical as predominant surface-terminating motif. This contrasts the long-standing view of high-valent metal ions driving the OER, and thus, our advanced operando spectroscopy study provides much needed fundamental understanding of the oxygen-evolving near-surface chemistry.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-07-102022-06-222022-08-08
 Publikationsstatus: Online veröffentlicht
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41560-022-01083-w
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : OPERANDOCAT - In situ and Operando Nanocatalysis: Size, Shape and Chemical State Effects
Grant ID : 725915
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Nature Energy
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 9 Band / Heft: 7 (8) Artikelnummer: - Start- / Endseite: 765 - 773 Identifikator: ISSN: 2058-7546
CoNE: https://pure.mpg.de/cone/journals/resource/2058-7546