Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  When to Be Critical? Performance and Evolvability in Different Regimes of Neural Ising Agents

Khajehabdollahi, S., Prosi, J., Giannakakis, E., Martius, G., & Levina, A. (2022). When to Be Critical? Performance and Evolvability in Different Regimes of Neural Ising Agents. Artificial Life, 28(4), 458-478. doi:10.1162/artl_a_00383.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Khajehabdollahi, S1, Autor           
Prosi, J1, Autor           
Giannakakis, E2, Autor           
Martius, G, Autor
Levina, A2, Autor           
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              
2Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3505519              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: It has long been hypothesized that operating close to the critical state is beneficial for natural and artificial evolutionary systems. We put this hypothesis to test in a system of evolving foraging agents controlled by neural networks that can adapt the agents' dynamical regime throughout evolution. Surprisingly, we find that all populations that discover solutions evolve to be subcritical. By a resilience analysis, we find that there are still benefits of starting the evolution in the critical regime. Namely, initially critical agents maintain their fitness level under environmental changes (for example, in the lifespan) and degrade gracefully when their genome is perturbed. At the same time, initially subcritical agents, even when evolved to the same fitness, are often inadequate to withstand the changes in the lifespan and degrade catastrophically with genetic perturbations. Furthermore, we find the optimal distance to criticality depends on the task complexity. To test it we introduce a hard task and a simple task: For the hard task, agents evolve closer to criticality, whereas more subcritical solutions are found for the simple task. We verify that our results are independent of the selected evolutionary mechanisms by testing them on two principally different approaches: a genetic algorithm and an evolutionary strategy. In summary, our study suggests that although optimal behaviour in the simple task is obtained in a subcritical regime, initializing near criticality is important to be efficient at finding optimal solutions for new tasks of unknown complexity.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-082022-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1162/artl_a_00383
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Artificial Life
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, MA : MIT Press
Seiten: - Band / Heft: 28 (4) Artikelnummer: - Start- / Endseite: 458 - 478 Identifikator: ISSN: 1064-5462
CoNE: https://pure.mpg.de/cone/journals/resource/954925600667