English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dewetting-assisted interface templating : complex emulsions to multicavity particles

Yandrapalli, N., & Antonietti, M. (2022). Dewetting-assisted interface templating: complex emulsions to multicavity particles. Advanced Science, 9(29): 2203265. doi:10.1002/advs.202203265.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Yandrapalli, Naresh1, Author           
Antonietti, Markus1, Author           
Affiliations:
1Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: complex emulsions; dewetting; microfluidics; multicavity particles; nanoindentation; polymersomes; proptose emulsions
 Abstract: Interfacial tension-driven formation of intricate microparticle geometries from complex emulsions is presented in this work. Emulsion-templating is a reliable platform for the generation of a diverse set of microparticles. Here, water-in-styrene-in-water complex emulsions undergo reproducible metamorphosis, i.e., from liquid state emulsions to solid structured microparticles are employed. In contrast to the traditional usage of glass-based microfluidics, polydimethylsiloxane (PDMS) swelling behavior is employed to generate complex emulsions with multiple inner cores. In the presence of block copolymer surfactant, these emulsions undergo gravity-driven dewetting of styrene, to transform into membranous structures with compartments. Further polymerization of styrene skeletal remains resulted in microparticles with interesting geometries and intact membranes. Mechanical and confocal microscopic studies prove the absence of polystyrene within these membranes. Using osmotic pressure, membrane rupture and release of encapsulated gold nanoparticles from such polymerized emulsions leading up to applications in cargo delivery and membrane transport are promoted. Even after membrane rupture, the structured microparticles have shown interesting light-scattering behavior for applications in structural coloring and biosensing. Thereby, proving PDMS-based swelling as a potential methodology for reproducible production of complex emulsions with a potential to be transformed into membranous emulsions or solid microparticles with intricate structures and multiple applications.

Details

show
hide
Language(s): eng - English
 Dates: 2022-08-122022
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/advs.202203265
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Science
  Other : Adv. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 9 (29) Sequence Number: 2203265 Start / End Page: - Identifier: ISSN: 2198-3844