English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Hierarchical Symbolic Regression for Identifying Key Physical Parameters Correlated with Bulk Properties of Perovskites

Foppa, L., Purcell, T., Levchenko, S. V., Scheffler, M., & Ghiringhelli, L. M. (2022). Hierarchical Symbolic Regression for Identifying Key Physical Parameters Correlated with Bulk Properties of Perovskites. Physical Review Letters, 129(5): 0545301. doi:10.1103/PhysRevLett.129.055301.

Item is

Files

show Files
hide Files
:
PhysRevLett.129.055301.pdf (Publisher version), 372KB
Name:
PhysRevLett.129.055301.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Foppa, Lucas1, Author           
Purcell, Thomas1, Author           
Levchenko, Sergey V., Author
Scheffler, Matthias1, Author           
Ghiringhelli, Luca M.1, Author           
Affiliations:
1NOMAD, Fritz Haber Institute, Max Planck Society, ou_3253022              

Content

show
hide
Free keywords: -
 Abstract: Symbolic regression identifies nonlinear, analytical expressions relating materials properties and key physical parameters. However, the pool of expressions grows rapidly with complexity, compromising its efficiency. We tackle this challenge hierarchically: identified expressions are used as inputs for further obtaining more complex expressions. Crucially, this framework can transfer knowledge among properties, as demonstrated using the sure-independence-screening-and-sparsifying-operator approach to identify expressions for lattice constant and cohesive energy, which are then used to model the bulk modulus of ABO3 perovskites.

Details

show
hide
Language(s): eng - English
 Dates: 2022-04-272022-02-232022-06-102022-07-252022-07-29
 Publication Status: Published in print
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevLett.129.055301
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : NOMAD CoE - Novel materials for urgent energy, environmental and societal challenges
Grant ID : 951786
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)
Project name : TEC1p - Big-Data Analytics for the Thermal and Electrical Conductivity of Materials from First Principles
Grant ID : 740233
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: 6 Volume / Issue: 129 (5) Sequence Number: 0545301 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1