Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore

Shi, X., Pumm, A.-K., Isensee, J., Zhao, W., Verschueren, D., Martin-Gonzalez, A., et al. (2022). Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore. Nature Physics, 18, 1105-1111. doi:10.1038/s41567-022-01683-z.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Shi, Xin, Autor
Pumm, Anna-Katharina, Autor
Isensee, Jonas1, Autor                 
Zhao, Wenxuan, Autor
Verschueren, Daniel, Autor
Martin-Gonzalez, Alejandro, Autor
Golestanian, Ramin1, Autor                 
Dietz, Hendrik, Autor
Dekker, Cees, Autor
Affiliations:
1Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2570692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Flow-driven rotary motors such as windmills and water wheels drive functional processes in human society. Although examples of such rotary motors also feature prominently in cell biology, their synthetic construction at the nanoscale has remained challenging. Here we demonstrate flow-driven rotary motion of a self-organized DNA nanostructure that is docked onto a nanopore in a thin solid-state membrane. An elastic DNA bundle self-assembles into a chiral conformation upon phoretic docking onto the solid-state nanopore, and subsequently displays a sustained unidirectional rotary motion of up to 20 rev s-1. The rotors harness energy from a nanoscale water and ion flow that is generated by a static chemical or electrochemical potential gradient in the nanopore, which are established through a salt gradient or applied voltage, respectively. These artificial nanoengines self-organize and operate autonomously in physiological conditions, suggesting ways to constructing energy-transducing motors at nanoscale interfaces.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-08-042022-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41567-022-01683-z
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 18 Artikelnummer: - Start- / Endseite: 1105 - 1111 Identifikator: ISSN: 1745-2473
ISSN: 1745-2481