Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons

Moynihan, M. A., Amini, S., Oalmann, J., Chua, J. I., Tanzil, J. T., Fan, T., et al. (2022). Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons. Acta Biomaterialia, 151, 446-456. doi:10.1016/j.actbio.2022.08.012.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 6MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Moynihan, Molly A., Autor
Amini, Shahrouz1, Autor                 
Oalmann, Jeffrey, Autor
Chua, J.Q. Isaiah, Autor
Tanzil, Jani T.I., Autor
Fan, T.Y., Autor
Miserez, Ali, Autor
Goodkin, Nathalie F., Autor
Affiliations:
1Shahrouz Amini, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3217681              

Inhalt

einblenden:
ausblenden:
Schlagwörter: crystal orientation; biomineralization; mechanical properties; microstructure; indentation; Young’s modulus
 Zusammenfassung: Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young’s modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young’s modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60∘, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young’s modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young’s modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing, rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-08-112022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.actbio.2022.08.012
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Acta Biomaterialia
  Andere : Acta Biomater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 151 Artikelnummer: - Start- / Endseite: 446 - 456 Identifikator: ISSN: 1742-7061