English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95Mo NMR Chemical Shift Descriptors

Berkson, Z. J., Lätsch, L., Hillenbrand, J., Fürstner, A., & Copéret, C. (2022). Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95Mo NMR Chemical Shift Descriptors. Journal of the American Chemical Society, 144(33), 15020-15025. doi:10.1021/jacs.2c06252.

Item is

Files

show Files
hide Files
:
ja2c06252_si_001.pdf (Supplementary material), 7MB
Name:
ja2c06252_si_001.pdf
Description:
Supporting Information
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Berkson, Zachariah. J.1, Author
Lätsch, Lukas1, Author
Hillenbrand, Julius2, Author           
Fürstner, Alois2, Author           
Copéret, Christophe1, Author
Affiliations:
1Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland, ou_persistent22              
2Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445584              

Content

show
hide
Free keywords: -
 Abstract: The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo–O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.

Details

show
hide
Language(s): eng - English
 Dates: 2022-06-142022-08-152022-08-24
 Publication Status: Published in print
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/jacs.2c06252
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the American Chemical Society
  Other : JACS
  Abbreviation : J. Am. Chem. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 144 (33) Sequence Number: - Start / End Page: 15020 - 15025 Identifier: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870