Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Topological data analysis of truncated contagion maps

Klimm, F. (2022). Topological data analysis of truncated contagion maps. Chaos, 32: 073108. doi:10.1063/5.0090114.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Chaos_Klimm_2022.pdf (Verlagsversion), 3MB
Name:
Chaos_Klimm_2022.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2022 Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Klimm, Florian1, Autor           
Affiliations:
1Transcriptional Regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479639              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The investigation of dynamical processes on networks has been one focus for the study of contagion processes. It has been demonstrated that contagions can be used to obtain information about the embedding of nodes in a Euclidean space. Specifically, one can use the activation times of threshold contagions to construct contagion maps as a manifold-learning approach. One drawback of contagion maps is their high computational cost. Here, we demonstrate that a truncation of the threshold contagions may considerably speed up the construction of contagion maps. Finally, we show that contagion maps may be used to find an insightful low-dimensional embedding for single-cell RNA-sequencing data in the form of cell-similarity networks and so reveal biological manifolds. Overall, our work makes the use of contagion maps as manifold-learning approaches on empirical network data more viable.
It is known that the analysis of spreading processes on networks may reveal their hidden geometric structures. These techniques, called contagion maps, are computationally expensive, which raises the question of whether they can be methodologically improved. Here, we demonstrate that a truncation (i.e., early stoppage) of the spreading processes leads to a substantial speedup in the computation of contagion maps. For synthetic networks, we find that a carefully chosen truncation may also improve the recovery of hidden geometric structures. We quantify this improvement by comparing the topological properties of the original network with the constructed contagion maps by computing their persistent homology. Finally, we explore the embedding of single-cell transcriptomics data and show that contagion maps can help us to distinguish different cell types.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-06-102022-07-05
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1063/5.0090114
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
  Andere : Chaos : an interdisciplinary journal of nonlinear science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Institute of Physics
Seiten: - Band / Heft: 32 Artikelnummer: 073108 Start- / Endseite: - Identifikator: ISSN: 1054-1500
CoNE: https://pure.mpg.de/cone/journals/resource/954922836228