Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Communication determines population-level fitness under cation stress by modulating the ratio of motile to sessile B. subtilis cells

Steinfeld, B. K., Cui, Q., Schmidt, T., & Bischofs, I. B. (2021). Communication determines population-level fitness under cation stress by modulating the ratio of motile to sessile B. subtilis cells. bioRxiv: the preprint server for biology, doi: 10.1101/2021.11.30.470380.

Item is

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1101/2021.11.30.470380 (Preprint)
Beschreibung:
-
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Steinfeld, Benedikt Konstantin1, Autor           
Cui, Qinna1, Autor           
Schmidt, Tamara1, Autor
Bischofs, Ilka B.1, Autor           
Affiliations:
1Department-Independent Research Group Complex Adaptive Traits, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266270              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacterial populations frequently encounter potentially lethal environmental stress factors. Growing Bacillus subtilis populations are comprised of a mixture of “motile” and “sessile” cells but how this affects population-level fitness under stress is poorly understood. Here, we show that, unlike sessile cells, motile cells are readily killed by monovalent cations under conditions of nutrient deprivation – owing to elevated expression of the lytABC operon, which codes for a cell-wall lytic complex. Forced induction of the operon in sessile cells also causes lysis. We demonstrate that population composition is regulated by the quorum sensing regulator ComA, which can favor either the motile or the sessile state. Specifically social interactions by ComX-pheromone signaling enhance population-level fitness under stress. Our study highlights the importance of characterizing population composition and cellular properties for studies of bacterial physiology and functional genomics. Our findings open new perspectives for understanding the functions of autolysins and collective behaviors that are coordinated by chemical and electrical signals, with implications for multicellular development and biotechnology.Competing Interest StatementThe authors have declared no competing interest.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Keine Begutachtung
 Identifikatoren: DOI: 10.1101/2021.11.30.470380
bioRxiv: 2021.11.30.470380
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: bioRxiv : the preprint server for biology
  Kurztitel : bioRxiv
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: doi: 10.1101/2021.11.30.470380 Start- / Endseite: - Identifikator: ZDB: 2766415-6
CoNE: https://pure.mpg.de/cone/journals/resource/2766415-6