English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A scaling law derived from optimal dendritic wiring

Cuntz, H., Mathy, A., & Häusser, M. (2012). A scaling law derived from optimal dendritic wiring. Proceedings of the National Academy of Sciences, 109(27), 11014-11018. doi:10.1073/pnas.1200430109.

Item is

Files

show Files
hide Files
:
Cuntz_2012_AScalingLawDerived.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
Cuntz_2012_AScalingLawDerived.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society (ESI), MFES; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
2012
Copyright Info:
Copyright © 2012 the authors
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Cuntz, Hermann1, 2, Author                 
Mathy, Alexandre, Author
Häusser, Michael, Author
Affiliations:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, ou_2074314              
2Cuntz Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, DE, ou_3381227              

Content

show
hide
Free keywords: computational neuroscience branching dendrite morphology minimum spanning tree adult-born neurons synaptic connectivity optimization morphologies principles number arbors dscam tree
 Abstract: The wide diversity of dendritic trees is one of the most striking features of neural circuits. Here we develop a general quantitative theory relating the total length of dendritic wiring to the number of branch points and synapses. We show that optimal wiring predicts a 2/3 power law between these measures. We demonstrate that the theory is consistent with data from a wide variety of neurons across many different species and helps define the computational compartments in dendritic trees. Our results imply fundamentally distinct design principles for dendritic arbors compared with vascular, bronchial, and botanical trees.

Details

show
hide
Language(s):
 Dates: 2012-06-192012-07-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.1200430109
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 109 (27) Sequence Number: - Start / End Page: 11014 - 11018 Identifier: ISSN: 0027-8424
ISSN: 1091-6490