English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Dangel, F., Harmeling, S., & Hennig, P. (2020). Modular Block-diagonal Curvature Approximations for Feedforward Architectures. In S. Chiappa, & R. Calandra (Eds.), Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS) 2020 (pp. 799-808). PMLR. Retrieved from http://proceedings.mlr.press/v108/dangel20a.html.

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Gold
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Dangel, Felix1, Author
Harmeling, Stefan1, Author
Hennig, Philipp1, 2, Author           
Affiliations:
1External Organizations, ou_persistent22              
2Max Planck Research Group Probabilistic Numerics, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_2344694              

Content

show
hide
Free keywords: Forschungsgruppe Hennig
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: DanHarHen20
URI: http://proceedings.mlr.press/v108/dangel20a.html
arXiv: 1902.01813
 Degree: -

Event

show
hide
Title: 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)
Place of Event: Online
Start-/End Date: 2020-08-26 - 2020-08-28

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS) 2020
Source Genre: Proceedings
 Creator(s):
Chiappa, Silvia1, Editor
Calandra, Roberto1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: PMLR
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 799 - 808 Identifier: URI: https://proceedings.mlr.press/v108/

Source 2

show
hide
Title: Proceedings of Machine Learning Research (PMLR)
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 108 Sequence Number: - Start / End Page: - Identifier: ISSN: 2640-3498