Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Automated scaffold selection for enzyme design

Malisi, C., Kohlbacher, O., & Höcker, B. (2009). Automated scaffold selection for enzyme design. Proteins: Structure, Function, and Genetics, 77(1), 74-83. doi:10.1002/prot.22418.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Malisi, C1, Autor           
Kohlbacher, O, Autor           
Höcker, B1, Autor           
Affiliations:
1Research Group Protein Design, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3384430              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A major goal of computational protein design is the construction of novel functions on existing protein scaffolds. There the first question is which scaffold is suitable for a specific reaction. Given a set of catalytic residues and their spatial arrangement, one wants to identify a protein scaffold that can host this active site. Here, we present an algorithm called ScaffoldSelection that is able to rapidly search large sets of protein structures for potential attachment sites of an enzymatic motif. The method consists of two steps; it first identifies pairs of backbone positions in pocket-like regions. Then, it combines these to complete attachment sites using a graph theoretical approach. Identified matches are assessed for their ability to accommodate the substrate or transition state. A representative set of structures from the Protein Data Bank ( approximately 3500) was searched for backbone geometries that support the catalytic residues for 12 chemical reactions. Recapitulation of native active site geometries is used as a benchmark for the performance of the program. The native motif is identified in all 12 test cases, ranking it in the top percentile in 5 out of 12. The algorithm is fast and efficient, although dependent on the complexity of the motif. Comparisons to other methods show that ScaffoldSelection performs equally well in terms of accuracy and far better in terms of speed. Thus, ScaffoldSelection will aid future computational protein design experiments by preselecting protein scaffolds that are suitable for a specific reaction type and the introduction of a predefined amino acid motif.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2009-10
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/prot.22418
PMID: 19408301
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proteins: Structure, Function, and Genetics
  Andere : Proteins: Struct., Funct., Genet.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : John Wiley & Sons
Seiten: - Band / Heft: 77 (1) Artikelnummer: - Start- / Endseite: 74 - 83 Identifikator: ISSN: 0887-3585
CoNE: https://pure.mpg.de/cone/journals/resource/954925553393