English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  To the cusp and back: Resurgent analysis for modular graph functions

Dorigoni, D., Kleinschmidt, A., & Treilis, R. (2022). To the cusp and back: Resurgent analysis for modular graph functions. Journal of High Energy Physics, 2022(11): 48. doi:10.1007/JHEP11(2022)048.

Item is

Files

hide Files
:
2208.14087.pdf (Preprint), 691KB
Name:
2208.14087.pdf
Description:
File downloaded from arXiv at 2022-09-01 13:28
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
JHEP11(2022)048.pdf (Publisher version), 760KB
Name:
JHEP11(2022)048.pdf
Description:
Open Access
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

hide
 Creators:
Dorigoni, Daniele, Author
Kleinschmidt, Axel1, Author           
Treilis, Rudolfs, Author
Affiliations:
1Quantum Gravity and Unified Theories, AEI Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

hide
Free keywords: High Energy Physics - Theory, hep-th,Mathematics, Number Theory, math.NT
 Abstract: Modular graph functions arise in the calculation of the low-energy expansion
of closed-string scattering amplitudes. For toroidal world-sheets, they are
${\rm SL}(2,\mathbb{Z})$-invariant functions of the torus complex structure
that have to be integrated over the moduli space of inequivalent tori. We use
methods from resurgent analysis to construct the non-perturbative corrections
arising when the argument of the modular graph function approaches the cusp on
this moduli space. ${\rm SL}(2,\mathbb{Z})$-invariance will in turn strongly
constrain the behaviour of the non-perturbative sector when expanded at the
origin of the moduli space.

Details

hide
Language(s):
 Dates: 2022-08-302022
 Publication Status: Issued
 Pages: 40 pages, 3 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2208.14087
DOI: 10.1007/JHEP11(2022)048
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Journal of High Energy Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2022 (11) Sequence Number: 48 Start / End Page: - Identifier: -