English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Magnetic propulsion of microswimmers with DNA-based flagellar bundles

Maier, A. M., Weig, C., Oswald, P., Frey, E., Fischer, P., & Liedl, T. (2016). Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Letters, 16(2), 906-910. doi:10.1021/acs.nanolett.5b03716.

Item is

Files

show Files
hide Files
:
NanoLett_16_2016_906.pdf (Any fulltext), 5MB
 
File Permalink:
-
Name:
NanoLett_16_2016_906.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
NanoLett_16_2016_906_Suppl.zip (Supplementary material), 30MB
 
File Permalink:
-
Name:
NanoLett_16_2016_906_Suppl.zip
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/zip
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Maier, Alexander M., Author
Weig, Cornelius, Author
Oswald, Peter, Author
Frey, Erwin, Author
Fischer, Peer1, Author                 
Liedl, Tim, Author
Affiliations:
1Max Planck Institute for Medical Research, Max Planck Society, ou_1125545              

Content

show
hide
Free keywords: DNA self-assembly; Propulsion; flagella; low-Reynolds-number; nanorobots; slender-body theory
 Abstract: We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

Details

show
hide
Language(s): eng - English
 Dates: 2015-01-252015-09-152016-01-282016-02-10
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.nanolett.5b03716
BibTex Citekey: 2016maier
URI: https://pubmed.ncbi.nlm.nih.gov/26821214/
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nano Letters
  Abbreviation : Nano Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 16 (2) Sequence Number: - Start / End Page: 906 - 910 Identifier: ISSN: 1530-6984
CoNE: https://pure.mpg.de/cone/journals/resource/110978984570403