Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  3D-printed soft microrobot for swimming in biological fluids

Qiu, T., Palagi, S., & Fischer, P. (2015). 3D-printed soft microrobot for swimming in biological fluids. In Annual international conference of the IEEE Engineering in Medicine and Biology Society (pp. 4922-4925). Piscataway, NJ, USA: IEEE.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Dateien

einblenden: Dateien
ausblenden: Dateien
:
AnnuIntConfIEEEEngMedBiolSoc_2015_4922.pdf (beliebiger Volltext), 802KB
 
Datei-Permalink:
-
Name:
AnnuIntConfIEEEEngMedBiolSoc_2015_4922.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, MHMF; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://ieeexplore.ieee.org/document/7319496 (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Qiu, Tian, Autor
Palagi, Stefano, Autor
Fischer, Peer1, Autor                 
Affiliations:
1Max Planck Institute for Medical Research, Max Planck Society, ou_1125545              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Propulsion, Magnetic fields, Fabrication, Fasteners, Viscosity, Magnetic liquids
 Zusammenfassung: Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable micro-swimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015
 Publikationsstatus: Erschienen
 Seiten: 4
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1109/EMBC.2015.7319496
BibTex Citekey: 2015qiu
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Veranstaltungsort: Milan, Italy
Start-/Enddatum: 2015-08-25 - 2015-08-29

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Annual international conference of the IEEE Engineering in Medicine and Biology Society
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Piscataway, NJ, USA : IEEE
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 4922 - 4925 Identifikator: ISSN: 1557-170X