Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Prediction of protein functional residues from sequence by probability density estimation.

Fischer, J., Mayer, C., & Söding, J. (2008). Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics, 24(5), 613-620. doi:10.1093/bioinformatics/btm626.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Fischer, JD1, Autor           
Mayer, CE1, Autor           
Söding, J1, Autor           
Affiliations:
1Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375791              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Motivation: The prediction of ligand-binding residues or catalytically active residues of a protein may give important hints that can guide further genetic or biochemical studies. Existing sequence-based prediction methods mostly rank residue positions by evolutionary conservation calculated from a multiple sequence alignment of homologs. A problem hampering more wide-spread application of these methods is the low per-residue precision, which at 20% sensitivity is around 35% for ligand-binding residues and 20% for catalytic residues.

Results: We combine information from the conservation at each site, its amino acid distribution, as well as its predicted secondary structure (ss) and relative solvent accessibility (rsa). First, we measure conservation by how much the amino acid distribution at each site differs from the distribution expected for the predicted ss and rsa states. Second, we include the conservation of neighboring residues in a weighted linear score by analytically optimizing the signal-to-noise ratio of the total score. Third, we use conditional probability density estimation to calculate the probability of each site to be functional given its conservation, the observed amino acid distribution, and the predicted ss and rsa states.

We have constructed two large data sets, one based on the Catalytic Site Atlas and the other on PDB SITE records, to benchmark methods for predicting functional residues. The new method FRcons predicts ligand-binding and catalytic residues with higher precision than alternative methods over the entire sensitivity range, reaching 50% and 40% precision at 20% sensitivity, respectively.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2008-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1093/bioinformatics/btm626
PMID: 18174181
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford University Press
Seiten: - Band / Heft: 24 (5) Artikelnummer: - Start- / Endseite: 613 - 620 Identifikator: ISSN: 1367-4803
CoNE: https://pure.mpg.de/cone/journals/resource/954926969991