Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments

Moravcik, I., Zelený, M., Dlouhý, A., Hadraba, H., Moravcikova-Gouvea, L., Papež, P., et al. (2022). Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments. Science and Technology of Advanced Materials, 23(1), 376-392. doi:10.1080/14686996.2022.2080512.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy theory and experiments.pdf (Verlagsversion), 13MB
Name:
Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy theory and experiments.pdf
Beschreibung:
Open Access
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Moravcik, Igor1, 2, Autor           
Zelený, Martin3, Autor
Dlouhý, Antonín4, Autor           
Hadraba, Hynek5, Autor           
Moravcikova-Gouvea, Larissa6, Autor           
Papež, Pavel3, Autor
Fikar, Ondřej3, 4, Autor
Dlouhy, Ivo2, 5, Autor           
Raabe, Dierk7, Autor           
Li, Zhiming8, 9, Autor           
Affiliations:
1High-Entropy Alloys, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
2NETME Centre, Institute of Materials Science and Engineering, Brno University of Technology, Technicka 2896/2, Brno, Czechia, ou_persistent22              
3Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Brno University of Technology, NETME Centre, Brno, Czech Republic, ou_persistent22              
4Institute of Physics of Materials, Academy of Sciences of the Czech Republic, CZ-Brno, Czech Republic, ou_persistent22              
5Institute of Physics of Materials CAS, Zizkova 22, 61662 Brno, Czechia, ou_persistent22              
6Institute of Materials Science and Engineering, Brno University of Technology, Technicka 2896/2 Brno, Czech Republic, ou_persistent22              
7Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
8High-Entropy Alloys, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
9School of Materials Science and Engineering, Central South University, Changsha 410083, China, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We investigated the effects of interstitial N and C on the stacking fault energy (SFE) of an equiatomic CoCrNi medium entropy alloy. Results of computer modeling were compared to tensile deformation and electron microscopy data. Both N and C in solid solution increase the SFE of the face-centered cubic (FCC) alloy matrix at room temperature, with the former having a more significant effect by 240% for 0.5 at % N. Total energy calculations based on density functional theory (DFT) as well as thermodynamic modeling of the Gibbs free energy with the CALPHAD (CALculation of PHAse Diagrams) method reveal a stabilizing effect of N and C interstitials on the FCC lattice with respect to the hexagonal close-packed (HCP) CoCrNi-X (X: N, C) lattice. Scanning transmission electron microscopy (STEM) measurements of the width of dissociated ½<110> dislocations suggest that the SFE of CoCrNi increases from 22 to 42–44 mJ·m−2 after doping the alloy with 0.5 at. % interstitial N. The higher SFE reduces the nucleation rates of twins, leading to an increase in the critical stress required to trigger deformation twinning, an effect which can be used to design load-dependent strain hardening response.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-302022-12-31
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1080/14686996.2022.2080512
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science and Technology of Advanced Materials
  Kurztitel : Sci. Technol. Adv. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : IoPP
Seiten: - Band / Heft: 23 (1) Artikelnummer: - Start- / Endseite: 376 - 392 Identifikator: ISSN: 1878-5514
CoNE: https://pure.mpg.de/cone/journals/resource/974392605051