English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Braided Picard groups and graded extensions of braided tensor categories

Davydov, A., & Nikshych, D. (2021). Braided Picard groups and graded extensions of braided tensor categories. Selecta Mathematica, 27(4): 65. doi:10.1007/s00029-021-00670-1.

Item is

Files

show Files
hide Files
:
2006.08022.pdf (Preprint), 1006KB
 
File Permalink:
-
Name:
2006.08022.pdf
Description:
File downloaded from arXiv at 2022-09-12 15:59
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Davydov-Nikshych_Braided Picard groups and graded extensions of braided tensor categories_2019.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
Davydov-Nikshych_Braided Picard groups and graded extensions of braided tensor categories_2019.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
Davydov_E-Mail_Publication2019.pdf (Correspondence), 84KB
 
File Permalink:
-
Name:
Davydov_E-Mail_Publication2019.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1007/s00029-021-00670-1 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Davydov, Alexei1, Author           
Nikshych, Dmitri, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Quantum Algebra, Category Theory
 Abstract: We classify various types of graded extensions of a finite braided tensor
category $\cal B$ in terms of its $2$-categorical Picard groups. In particular,
we prove that braided extensions of $\cal B$ by a finite group $A$ correspond
to braided monoidal $2$-functors from $A$ to the braided $2$-categorical Picard
group of $\cal B$ (consisting of invertible central $\cal B$-module
categories). Such functors can be expressed in terms of the Eilnberg-Mac~Lane
cohomology. We describe in detail braided $2$-categorical Picard groups of
symmetric fusion categories and of pointed braided fusion categories.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Issued
 Pages: 87
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2006.08022
DOI: 10.1007/s00029-021-00670-1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Selecta Mathematica
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Birkhäuser
Pages: - Volume / Issue: 27 (4) Sequence Number: 65 Start / End Page: - Identifier: -